要说到数据分析什么最重要这个话题的话,很容易引发热力的讨论。但是对于道富银行前高级副总裁、数据治理负责人David Blaszkowsky看来,最重要的事情很容易被日常生活中的琐事冲淡并忽略:你企业机构内的数据文化。你可以灌输和试图强制执行数据收集相关的很多规则,但如果你的企业机构没有一种真正相信数据重要性的文化,那么最终会以失败而告终。
这意味着企业机构需要真正了解他们在数据方面的目标和任务是什么。"如果从一开始你就考虑数据应该是什么、应该意味着什么、你希望如何使用数据、收集和维护数据的方式会带来怎样的影响等等一系列问题的话,那么事情就会容易很多了,"Blaszkowsky这样表示。你可以有很多精良的分析系统,但是归根结底是数据本身以及你打算如何利用这些数据。今年在美国麻省理工学院举行的首席数据官CDO论坛上,Blaszkowsky接受采访时这样说。
利用分析找出风险
当被问及如何预测未来的金融灾难时,Blaszkowsky强调说,你无法有把握地预测这种事,但是你可以在风险因素出现的时候发现它。
"首先,找出能够识别风险的分析类型,然后对进行这些分析所需数据进行标准化,"他说。但是,在灾难过后有效清理是一个随着时间推移要学习的事情。Blaszkowsky的策略是一种为灾难做准备的好方法,此外还要部署好系统以防不幸的事情发生。
MIT CDOIQ研讨会的演变
作为参加多多届麻省理工学院CDOIQ研讨会的人,Blaszkowsky看着这个活动不断壮大,人们提出的问题也从"我们如何找到数据?"延伸到更实际的案例。
他每年都参加这个会议的另一个原因就是他希望与公共的、私人的以及学术部门之间分享信息和最佳实践,"这种分享成果是惊人的,"他补充说。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。