谷歌与Iron Mountain双方正努力将历史悠久的存储介质磁带引入云环境,从而实现LTO向云的全面迁移。
LTO是一类标准磁带格式,其支持者包括IBM、惠普以及昆腾等等。单一第七代LTO磁带能够存储15 TB数据,该标准还计划升级至第十代,预计存储容量可达120 TB。
不过谷歌公司目前运营有一项名为Cloud Storage Nearline的服务,其每月每GB存储资源起步价格为0.01美元,并承诺恢复时长仅为3秒。这样的速度表现相当惊人,甚至超过了高端磁带库方案。
不过Nearline目前面临着一项难题,即从磁带向云端迁移TB级别数据需要耗费极长时间。谷歌公司给出的解决方案名为"cloud seeding",即寻求合作伙伴并由其提供传输通道,并借此完成数据上传。作为合作伙伴之一,Iron Mountain刚刚宣布将其数据仓库与谷歌基础设施间的传输通道扩大10倍。谷歌方面指出,此次扩容意味着"通过这一链路进行50 TB数据迁移的耗时将低于一天。"
Iron Mountain公司还增添了消费LTO磁带的能力,并将其内容通过自家扩容后的通道传输至谷歌。这意味着磁带数据存储效果将更快且更加易用。
当初谷歌公司刚刚启动Nearline服务时,其预备的服务启动存储容量为100 PB。而这一次,通过Iron Mountain进行存储服务登录的客户则能够享受到500美元信用额度--遗憾的是这一机制仅适用于美国本土。
无论如何,谷歌公司已经针对磁带存储介质做出了明确规划。存储行业曾经无数次预言过磁带的消亡,但其实际消亡却是明年复明年、明年何其多。谷歌与Iron Mountain双方正积极推进由磁带向云存储环境的迁移,但在我们看来仍将有众多企业客户出于种种理由而继续使用内部磁带存储方案。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。