通过私有的或者共有的密钥对数据进行加密是一种在云计算兴起之前就较为普遍的数据保护方式,主要包括128位和256位两种加密方式,Google Compute Engine之前就是使用的256位的AES密钥来对数据进行加密的,但是这种加密是由Google进行的,并且密钥会定期循环使用,用户并没有密钥的所有权,因此或多或少的造成用户对安全方面的担忧。
此次Google采用的Customer-Supplied Encryption Keys方式将密钥进行了私有化,不仅允许用户自行创建并保管密钥,决定数据的激活和休眠,更为重要的是在没有密钥的情况下,Google内外的任何人都无法获取这些休眠的数据。而 Google除了暂时使用密钥来执行客户请求外不会保留这些密钥。从企业内部到云上时,加密过程可以不需要用户干预是保障数据安全的首选方式。比如多备份采用的将数据先分块再加密的方式,在安装了多备份客户端之后,会自动生成一个密钥,这个密钥只有用户自己有权限查看和保存。
除密钥加密方式之外,众多的云服务商也在积极探讨其他的加密方式,比如:
内容感知:在数据防泄露中使用,内容感知软件理解数据或格式,并基于策略设置加密;
保格式加密:加密一个消息后产生的结果仍像一个输入的消息。
Cloud 5数据分块存储:多备份Cloud 5的前身是Raid 5,Raid 5使用的是Disk Striping(硬盘分区)技术。Raid 5至少需要三颗硬盘,Raid 5不是对存储的数据进行备份,而是把数据和相对应的parity(奇偶校验信息)存储到组成Raid 5的各个磁盘上,并且parity和相对应的数据分别存储于不同的磁盘上。 当Raid 5的一个磁盘数据发生损坏后,可以利用剩下的数据和相应的parity去恢复被损坏的数据。而cloud 5则是在Raid 5的基础上进行优化升级,实现了云端数据的实时存储和管理。
现在,越来越多的企业将系统内部管理的机密信息迁移到云端,与此同时,企业也需要花更多的力气去保护这些机密信息,而作为公有云最强的布道者,各云厂商也在竭尽全力的打消大众对安全性的担忧。确保云端数据100%的安全不是不可能的,但目前阶段尚未实现。不过可喜的是,我们已经在安全方面有了更多的依赖,可以肯定的是,未来云端将成为数据最为主要的存储地。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。