VMware和OpenStack经常被描述为相互竞争的两种私有云技术。虽然这两种技术其实可以互补,但一些组织却选择从VMware迁移到OpenStack的私有云上。
让我们来看看这些组织如何能同时使用这两种技术--无论是长期的,或是走向完全基于OpenStack的云的铺垫。
首先,要记住很重要的一点,OpenStack不是一个虚拟机管理程序。它可以通过抽象层支持大多数的虚拟机管理程序,这也为我们开启了可以使用它的自动编排能力的绝佳机会。
一个具体的例子可以清楚的解释这一点。Intel的IT部门在2010年实现了一个基于VMware的大型私有云以及一个单独的OpenStack云来支持KVM和Ceph。Intel的模式得到了进一步发展,可以使用OpenStack来编排这两个环境,除了Intel定制的自动化集合。
在2014年,Intel的IT托管机构处理了8000个人工服务请求,其中花费了190000个小时在等待完成。到2016年底,Intel预计,基于它们新的云模型,90%的人工服务请求可以立即自动处理,这大大的节约了时间。
大部分OpenStack的发行版本都支持ESXi以及VMware工具的使用。这会演变成使用vSphere 和VMotion的复杂的,多云多站点的操作来支持关键任务的应用程序。
Intel的做法是让VMware和OpenStack并存,但在某些情况下,企业希望用更低成本的虚拟机管理程序,如KVM,又能够结合OpenStack编排的好处。
从VMware转移到OpenStack私有云之前要了解的事情
鉴于许多企业在VMware上的前期投资,从VMware迁移到OpenStack的现象还是比较少见的。但事实上,这个迁移正在发生--而且是成功的发生--这引起了VMware客户群的注意。
有些公司采取了与Intel相似的做法。他们先从自己的工作负载中切割出一块可以在比如KVM上运行的很好的环节,将那部分放到OpenStack中。随着经验的积累,更多的业务操作会转移到OpenStack上。然后,公司便需要做出关键的战略决策:保留他们的VMware环境来执行关键任务的工作负载,还是全部迁移到OpenStack。
那些最广为人知的OpenStack迁移案例研究,比如eBay,Comcast和沃尔玛,往往是非常大的企业。这是因为迁移的过程是复杂的,且需要新的资源。此外,OpenStack的功能仍在不断发展,尤其是高可用性,存储和监控的功能。这解释了为什么OpenStack-VMware的混合模型会存在,这些组织使用VMware中好用的功能来填补OpenStack的空白之处。
两种云环境以及vSphere共存--例如之前提到的Intel的案例;
跨VMware和OpenStack资源池的可移植性,针对应用生命周期的某些部分采用不同的云;
以及完成最终到OpenStack的迁移
随着大多数的大公司都部署这种混搭的模型,使用OpenStack的管理功能来连接资源池似乎是不错的第一步。这正是Intel在走向可移植性和用户控制资源的过程中所做的。
从逻辑上讲,下一步是创建一个可移植的应用程序架构,可以允许应用跨池迁移。将此模型应用于新的应用程序,并且有选择地,应用到现有的应用程序上,基于它们是否应该被迁移或被替换。
无论你的最终目的是什么,是从VMware完全迁移出去,还是只留下VMware工具,而关键任务应用使用OpenStack的部分迁移,又或者可能只是使用OpenStack来控制VMware的资源池,这是一个应该要花上几年的过程,请做好不断尝试的心理准备。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。