在2014年年中,有两位Gartner分析师曾经对数据湖概念日益加剧的炒作提出了批评。
"数据湖的根本问题是,它对信息的使用者做出了某些假设,"Gartner研究总监Nick Heudecker表示。
"它假设用户意识到或者了解获取数据的背景偏见,他们知道如何在没有先验知识的情况下整合并协调不同数据来源,他们知道数据集不完整的特性,不管数据结构是如何的。"
一年半之后,Garnter的担忧似乎并没有得到缓解。虽然有成功的项目,但也有失败的--关键成功因素似乎是对数据湖和数据仓库不同角色的深入理解。
Heudecker表示,数据湖通常被当作解决大数据挑战的一种方法,是提出数据新问题的好地方,"只要你有能力"。
"如果这是你想要做的,我就不那么关心数据湖的实施。不过,风险较高的情况是,如果你的目的是要在数据湖上重新实现数据仓库的服务水平协议(SLA)。"
Heudecker表示,数据湖通常是针对不同使用实例、并发性和多租户进行优化的。
"换言之,不要针对数据仓库使用数据湖。"
他说,两者都需要,这是完全合理的,因为两者都是还针对不同SLA、用户和技能进行优化的。
广义上说,数据湖是企业级平台,用于分析各种数据来源的原生数据格式,避免数据接受的成本和数据转换复杂性。因此这里所面临的挑战是:数据湖缺乏语意一致性和受监管的元数据,这需要有技能的用户承担大量分析的责任。
Heudecker表示,在理解方面逐渐成熟,但是数据湖的炒作依然猖獗。
该技术的成熟是很难做到的,因为实施数据湖的技术选择仍然在快速变化中。
"例如,Spark是一个流行的数据处理框架,平均每43天就会做一些新的发布,"Heudecker表示。
他说,数据湖项目的成功因素要归结于元数据管理、对技能的掌握、以及强制实施监管。
"我和很多构建数据湖的公司交流过,他们把很多数据放到数据湖里面,但没有发现任何结果。其他人不知道哪些数据集是不准确的,那些是高质量的。与IT的其他东西一样,是没有一个一劳永逸的方法的。"
数据湖是一个架构理念,而不是一个具体的实施方式,他说。
"与任何新理念、新技术一样,在成为一项人们理解的实践之前往往伴随着炒作,在这之后就是幻灭。"
"数据湖仍将反映的是使用它的数据科学家。"
"这个技术可能会改变和改善,也许会利用像GPU或者FPGA这样的东西,但总体目标是发现数据新的用途和新的机会,有可能会将这些洞察带入到生产中。"
好文章,需要你的鼓励
OpenAI宣布获得400亿美元融资,估值飙升至3000亿美元,成为史上最大私募投资。这笔资金将用于AI研究、基础设施和产品开发,显示了AI在企业技术领域的重要性日益提升。OpenAI用户数量激增,每小时新增100万,反映出其在激烈竞争中的强劲增长。此轮融资强化了OpenAI在企业AI解决方案市场的地位,企业决策者需密切关注AI技术的快速发展。
OpenAI 宣布计划发布自 2019 年以来首个"开放权重"语言模型,这标志着该公司战略的重大转变。这一决定源于开源 AI 的经济压力,反映了基础模型商品化的趋势。此举可能重塑企业 AI 实施策略,尤其是在受监管行业中。OpenAI 面临在开放性和责任之间取得平衡的挑战,同时也凸显了 AI 行业竞争格局的根本变化。
Microsoft 正在对 Windows 系统崩溃时显示的蓝屏 (BSOD) 进行重新设计。新设计简化了界面,保留了技术信息,旨在提高用户生产力恢复速度。新版 BSOD 移除了表情符号和二维码,但保留了错误代码和失败进程信息。这一变更反映了 Microsoft 对提升用户体验的持续关注。
CarMax 作为美国最大的二手车零售商,年收入超过 265 亿美元。在 Shamim Mohammad 的领导下,公司成功实现了数字化转型,成为汽车行业的领先者。通过建立强大的技术基础、优化数据策略、应用人工智能技术,以及采用产品运营模式,CarMax 正在重塑汽车零售的未来。Mohammad 的前瞻性领导力和对创新的不懈追求,使 CarMax 在数字化时代保持竞争优势。