2015年12月29日 近日,由IEEE(电气和电子工程师协会)的年度报告——2015专利实力评鉴(Patent Power Scorecards)出炉。在计算机综合(计算机软件、计算机系统、计算机外设和存储)类别中,EMC获得4837的高分,位居榜首。
IEEE专利实力评鉴是一年一度的综合分析,通过对全球范围内6000多家领先的商业企业、学术机构、非营利性组织和政府机构专利组合的基准测试,IEEE给出其“Pipeline Power”得分,评估谁拥有最宝贵的专利组合。衡量标准包括组织专利组合的大小,最近一整年获得专利授予的数量,基于一系列反映增长、影响、独创性等指标判断的专利分量,以及组织专利组合的通用性等。
在计算机软件、计算机系统、计算机外设和存储三大类别综合中,EMC排名第一,排名第二至第五的分别是IBM、Microsoft、Western Digital和VMware。
当把所有行业类别都考虑进来时,EMC仍高居全球第五,前四位分别是Google(通信/互联网服务)、Apple(电子)、Facebook(通信/互联网服务)和Qualcomm(通信/互联网设备)。
目前,EMC拥有近5900个美国专利商标局(USPTO)发表的专利,EMC信息基础设施(EMC II)拥有近5000个。此外,EMC还有近4500个美国专利应用待批。
2003-2014的12年间,EMC在研发和收购上的投入高达420亿美元,不断通过领先的技术,助力客户的数字化转型之旅,通向混合云。公司上下对创新投入不变的关注,也直接吸引了市场上最优秀的、最具竞争力的人才。IEEE最新的2015专利记分卡排名,从另一个侧面印证了EMC创新引擎的活力。
相关资源
Patent Power 2015
http://spectrum.ieee.org/static/interactive-patent-power-2015
EMC Earns Top Marks On Patent Power 2015
http://v.qq.com/page/x/e/8/x0178uez6e8.html
关于IEEE专利实力评鉴(Patent Power Scorecards)
专利实力评鉴由《IEEE SPECTRUM》杂志自2007年开始每年发布一次,到2015年11月30日共发布了9期榜单。专利实力评鉴的评选对象是全球范围内的公司、大学、研究机构和政府机构等组织。专利实力评鉴完全按照组织所在的行业来进行分类评比,每次发布17个榜单:航空航天和国防、汽车及零部件、生物医药、化学、通信/网络设备、通信/网络服务、计算机设备和存储、计算机软件、计算机系统、电子产品、医疗器械、科学仪器、半导体设备制造、半导体制造、综合型企业、政府机构、大学/教育/培训。
专利实力评鉴各榜单上的组织是根据专利综合实力进行排名的,其综合考量了专利组合的数量和技术价值,由于采用了技术加权后的专利组合规模作为衡量依据,专利实力评鉴可以较全面准确地评价某个组织的技术实力。
专利综合实力是对专利数量及专利成长性、技术影响力、技术原创性和技术通用性进行组合运算后的综合性指数,其计算公式为:专利综合实力(Pipeline Power)=上一年度授权专利数量(Number of Last Year’s Patents)×专利增长指数(Pipeline Growth Index)×校正后的技术影响指数(Adjusted Pipeline Impact)×技术原创指数(Pipeline Originality)×技术通用指数(Pipeline Generality)。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。