作者:昆腾监控与安全解决方案副总裁 Wayne Arvidson
对于2016年安防监控行业面对着怎样的挑战,昆腾有着怎样的预测?
1. 更加智能、更加清晰的摄像头、更大范围的主流应用意味着更多数据需要管理
先进的视频监控已不再专属于国家安全。大学、市政、学校和商业企业都在采用具有更多传感器、更广的全景以及更高分辨率的摄像头。此外,这些企事业结构希望通过摄像头本身内置监控功能,比如:数据压缩、流媒体、存储、分析等等,获得更大的价值。高清摄像头的商业化意味着价格将持续降低,更多企业机构将从模拟和标清摄像头转向高清摄像头。2016年,高清摄像头将大幅增加,我们将看到摄像头数量达到峰值,从而导致需要管理的视频数据呈指数激增。
2. 为了更好地执法,可穿戴摄像头已普遍使用,存储挑战也随之出现
2015年部署了大量可穿戴摄像头的试点项目。2016年,随着有关部门意识到证据和公共安全的价值,我们将看到更多可穿戴摄像头的普及,素材保留时间也将更长。由于更多分析功能融入摄像头本身,如果没有良好的数据存储策略,网络视频录制质量将受到影响。目前,许多执法部门和机构仍然苦于管理这些海量的新数据集。执法部门必须更好地了解并部署正确的存储基础架构,才能支持可穿戴摄像头的海量部署。2016年,政府和执法机构的IT管理者将进一步分析如何管理可穿戴摄像头生成的与日俱增的数据,这将成为持续性的工作。
3. 监控分析和商业智能将联手
2016年,执法和私营部门将进一步明确,视频监控信息不仅对于安全有用,对于支持未来的业务决策也大有用处。明年,我们将看到更多企业成功利用视频监控数据赚钱的例子。从零售到货运和物流,更多公司将发现其视频数据背后隐藏的财富,从而紧缩供应链,并保持货架充足供货。要想把不同文件类型的海量数据集整合到一个通用分析引擎中,需要经过深思熟虑,部署有针对性的存储基础架构。
4. 分层存储是最佳的选择
2016年发展趋势提高了对更多视频数据存储的需求,并且需要保留更长时间。曾经安装独立系统,并作为一个单独的业务线来运营的安全经理,将需要与其数据库首席管理员合作,以应对整个企业所需要的越来越多的视频应用。管理这些新的视频数据可能成本很高,会很快耗尽网络性能。企业IT部门必须做好准备,通过可支持数据的轻松访问,整体拥有成本最低的架构,来满足不断变化的视频需求。由于传统方案面临支持越来越多的、拍摄更高分辨率画面的摄像头,以及进行更加复杂的分析,为了进一步的可持续发展,带有磁带、磁盘和云存储组合的分层存储将日益成为最合适的解决方案。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。