Starr的好主意:让文件访问速度更进一步。
以手工方式拔出磁带卡盘
生产混合型闪存磁带卡盘的主意是由SpectraLogic公司CTO Matt Starr在昨天的一次谈话当中提出的。
他指出,LTFS已经在市场上变得越来越受欢迎,但被保存在磁带上的LTFS信息则无法被直接读取--我们需要首先将对应的LTO卡盘插入驱动器才能访问其中的数据。
这无疑需要耗费相当的时间,而且在磁带库当中,会由机器人负责将驱动器从架子上拿下再接入驱动器。即使这样,大家不妨想象一下,如果在磁带卡盘当中加入闪存芯片又会怎样。这意味着LTFS信息可以被保存在闪存当中,从而显著提升读取速度;而且通过这种方式,首文件的读取速度亦能大大改善。
在这套方案当中,闪存将以缓存的形式存在,其作用与在混合型闪存/磁盘驱动器当中一样,而且可以被用于存储/缓存磁带内容元数据。
照这样的思路考虑,那么驱动器需要负责为卡盘供电,同时将读取线缆接入其中,这样闪存芯片就能接受读取操作了。大家甚至可以想象在其中使用迷你USB之类的接口,从而同时实现供电与读取这两项要求。
这可能会成为未来LTO格式规范中的组成部分,例如接下来将要推出的LTO8。我们甚至能够设想甲骨文与IBM等老牌厂商将其纳入自己的专有磁带格式发展路线图。
磁带系统工程师们必须得告诉我们这样的设计方案为什么具有实际价值,而其具体回报又是否值得上由此带来的实现成本。
说到这里,我们想到了另一个更加奇幻的设计思路,即让磁带机器人在从插槽中拿取闪存/磁带驱动器时同时为其接入迷你USB类连线。这样一来,整套系统就能够在卡盘从插槽转移到驱动器内的过程当中即刻开始读取磁带中的元数据。通过这种方式,也许整个延迟时长还能再缩短几毫秒。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。