用户背景:
某市三级甲等医院,是以肿瘤、恶性血液病诊治、化学中毒和放射病救治为主要专科的综合性医院。
信息中心通过光缆联结各个医疗大楼,总计客户端300余台,服务器10余台。
由于用户曾经出现过院内施工挖断光缆造成整个门诊信息业务停顿同时网络内部蠕虫病毒大量爆发,影响到所有计算机系统。为了考虑到今后网络的正常运行以及安全防护。该医院信息部门决定对现有系统做容灾、数据保护及安全防护。
用户需求:
HIS系统数据库为本医院的核心系统,医院需要保证该系统的正常运行,因此要考虑对该系统实施容灾及相关系统的备份。客户希望如果出现以前光纤中断或者信息中心因某种原因无法工作的情况下,使用门诊楼的备用服务器接管所有业务系统;也防止由于人为原因造成数据损坏与数据丢失,保证数据的完整。同时控制网络内客户端的一机双用,防止整个网络系统的病毒爆发等问题。
技术解决方案:
我们在该方案里使用了某存储厂商的集群容灾产品、备份、客户端安全防护系统及客户端访问控制系统。具体产品如下:
某存储厂商负责多服务器之间的数据复制以及故障自动切换以保护关键系统的正常运行。
负责对系统数据进行备份归档,以防止意外的灾难发生。可以在最短的时间内恢复所有数据。
负责对客户端的防护,防止蠕虫及病毒的侵入和传播。
负责对客户端的访问控制,限制客户端在规定以外的数据访问,防止内网客户端随意访问外网。
方案设计图
应用效果:
通过实施了这套方案,采用三服务器冗余,无论哪台服务器、主干网络、核心交换机出现问题时,都不影响核心系统的正常运行。同时提供了数据异地离线存储能力,无论出现任何情况,都可以及时恢复运行数据。另外通过安全管理及防病毒软件,控制了内部用户的非法外网访问,控制了病毒和蠕虫来源。即时由于某种原因传入内网,也可以迅速清除和控制。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。