当传统存储硬件无法控制虚拟工作负载时,VM感知存储就可以派上用场。那么VMware的VVOL是否也有能力解决这个问题呢?
服务器虚拟化产生的一个问题就是其升级速度要超过物理硬件。尽管今天的服务器硬件都支持虚拟化感知,但却不能与基础设施组件等量齐观,例如网络和存储硬件。这就意味着很多企业当前的虚拟机正运行在并非专为控制虚拟工作负载设计的存储硬件之上。
VM感知存储是一种解决方案。VM感知存储指的是专为虚拟化环境设计的存储。理论上看,VM感知存储在控制多I/O密集型负载方面要比通用存储更有优势。
某种程度上,vShere 6中推出的VVOL特性也被认为是实现企业VM感知的一个工具。VVOL改变了存储管理的方式。与处理单个LUN和卷的工作不同,存储管理员能够去定义存储容器并且分配概述其功能的策略。例如,存储管理员就能可能去定义一个支持克隆、快照等等的策略。
一旦存储管理员定义了容器和策略,那么虚拟化管理员就要为新创建的VM匹配一个合适的策略。然后VVOL将会映射VM到能够提供已选策略相关功能的存储。
但是,企业只有运行vSphere 6或者其存储厂商支持VVOL才能利用VVOL。这意味着存储厂商要做出一个清醒的决定——实现必要的VMware API。
这也就是说VVOL并无法最终取代VM感知存储。倒不如说VVOL是一种利用VM感知存储的机制。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。