当传统存储硬件无法控制虚拟工作负载时,VM感知存储就可以派上用场。那么VMware的VVOL是否也有能力解决这个问题呢?
服务器虚拟化产生的一个问题就是其升级速度要超过物理硬件。尽管今天的服务器硬件都支持虚拟化感知,但却不能与基础设施组件等量齐观,例如网络和存储硬件。这就意味着很多企业当前的虚拟机正运行在并非专为控制虚拟工作负载设计的存储硬件之上。
VM感知存储是一种解决方案。VM感知存储指的是专为虚拟化环境设计的存储。理论上看,VM感知存储在控制多I/O密集型负载方面要比通用存储更有优势。
某种程度上,vShere 6中推出的VVOL特性也被认为是实现企业VM感知的一个工具。VVOL改变了存储管理的方式。与处理单个LUN和卷的工作不同,存储管理员能够去定义存储容器并且分配概述其功能的策略。例如,存储管理员就能可能去定义一个支持克隆、快照等等的策略。
一旦存储管理员定义了容器和策略,那么虚拟化管理员就要为新创建的VM匹配一个合适的策略。然后VVOL将会映射VM到能够提供已选策略相关功能的存储。
但是,企业只有运行vSphere 6或者其存储厂商支持VVOL才能利用VVOL。这意味着存储厂商要做出一个清醒的决定——实现必要的VMware API。
这也就是说VVOL并无法最终取代VM感知存储。倒不如说VVOL是一种利用VM感知存储的机制。
好文章,需要你的鼓励
谷歌深度思维团队开发出名为MolGen的AI系统,能够像经验丰富的化学家一样自主设计全新药物分子。该系统通过学习1000万种化合物数据,在阿尔茨海默病等疾病的药物设计中表现出色,实际合成测试成功率达90%,远超传统方法。这项技术有望将药物研发周期从10-15年缩短至5-8年,成本降低一半,为患者更快获得新药治疗带来希望。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
哈佛医学院和微软公司合作开发了一个能够"听声识病"的AI系统,仅通过分析语音就能预测健康状况,准确率高达92%。该系统基于深度学习技术,能够捕捉声音中与疾病相关的微妙变化,并具备跨语言诊断能力。研究团队已开发出智能手机应用原型,用户只需完成简单语音任务即可获得健康评估,为个性化健康管理开辟了新途径。