当传统存储硬件无法控制虚拟工作负载时,VM感知存储就可以派上用场。那么VMware的VVOL是否也有能力解决这个问题呢?
服务器虚拟化产生的一个问题就是其升级速度要超过物理硬件。尽管今天的服务器硬件都支持虚拟化感知,但却不能与基础设施组件等量齐观,例如网络和存储硬件。这就意味着很多企业当前的虚拟机正运行在并非专为控制虚拟工作负载设计的存储硬件之上。
VM感知存储是一种解决方案。VM感知存储指的是专为虚拟化环境设计的存储。理论上看,VM感知存储在控制多I/O密集型负载方面要比通用存储更有优势。
某种程度上,vShere 6中推出的VVOL特性也被认为是实现企业VM感知的一个工具。VVOL改变了存储管理的方式。与处理单个LUN和卷的工作不同,存储管理员能够去定义存储容器并且分配概述其功能的策略。例如,存储管理员就能可能去定义一个支持克隆、快照等等的策略。
一旦存储管理员定义了容器和策略,那么虚拟化管理员就要为新创建的VM匹配一个合适的策略。然后VVOL将会映射VM到能够提供已选策略相关功能的存储。
但是,企业只有运行vSphere 6或者其存储厂商支持VVOL才能利用VVOL。这意味着存储厂商要做出一个清醒的决定——实现必要的VMware API。
这也就是说VVOL并无法最终取代VM感知存储。倒不如说VVOL是一种利用VM感知存储的机制。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。