虚拟SAN存储与数据管理软件供应商DataCore公司宣称其已经为虚拟多核心服务器当中的低下IO速度表现找到了解决办法--即让各计算核心真正发挥作用。

DataCore公司认为这种机制能够切实解决常见的虚拟化多核心服务器IO难题,而非单纯适用于存储领域。
DataCore公司宣称,目前运行在多核心服务器之上的操作系统与容器虚拟化技术仍然在以串行方式处理IO,然而实际工作负载却早已经开始以并行方式覆盖多个CPU计算核心。换言之,这意味着需要由单一IO计算核心承担全部IO处理任务。
DataCore公司表示,以VMware公司的ESXi为例,其只会在多核心CPU当中指定一个计算核心处理IO任务。假设用户选择的是一块八核心处理器,那就意味着其它七个应用核心必须共享单一IO核心的处理能力,对IO进行序列化并争夺数据供给资源,这必然会导致IO队列的形成。
DataCore方面解释称,目前的主流数据库应用普遍属于IO敏感型方案,而虚拟服务器根本无法有效加以应对,也就是说我们面临着"服务器使用率低下"这一历史性难题。这几乎相当于通过增加磁头数据来缩短磁盘驱动器读取行程,进而提升磁盘驱动器阵列的响应速度并最终解决糟糕的磁盘容量使用率。
事实上,目前CPU正是限制IO处理速度得到进一步提升的最大障碍。
DataCore公司的Adaptive Parallel IO(即自适配并行IO)技术能够与VMware的ESXi虚拟机管理程序相协作,从而将多个计算核心--而非传统方案中的一个--纳入到IO处理流程中来。

多核心CPU场景下的串行IO瓶颈概念示意图

DataCore公司提出的并行IO概念
DataCore公司的并行IO软件技术从直观角度来理解,意味着两台采用这项技术的服务器能够将IO效率提升至原有水平的10倍。该公司宣称"应用能够以10倍于原有水平的速度运行,甚至在虚拟环境下亦是如此--也就是说任务完成时间仅为过去的十分之一,"TechValidate在一份面向DataCore公司客户的调查报告当中指出。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。