虚拟SAN存储与数据管理软件供应商DataCore公司宣称其已经为虚拟多核心服务器当中的低下IO速度表现找到了解决办法--即让各计算核心真正发挥作用。
DataCore公司认为这种机制能够切实解决常见的虚拟化多核心服务器IO难题,而非单纯适用于存储领域。
DataCore公司宣称,目前运行在多核心服务器之上的操作系统与容器虚拟化技术仍然在以串行方式处理IO,然而实际工作负载却早已经开始以并行方式覆盖多个CPU计算核心。换言之,这意味着需要由单一IO计算核心承担全部IO处理任务。
DataCore公司表示,以VMware公司的ESXi为例,其只会在多核心CPU当中指定一个计算核心处理IO任务。假设用户选择的是一块八核心处理器,那就意味着其它七个应用核心必须共享单一IO核心的处理能力,对IO进行序列化并争夺数据供给资源,这必然会导致IO队列的形成。
DataCore方面解释称,目前的主流数据库应用普遍属于IO敏感型方案,而虚拟服务器根本无法有效加以应对,也就是说我们面临着"服务器使用率低下"这一历史性难题。这几乎相当于通过增加磁头数据来缩短磁盘驱动器读取行程,进而提升磁盘驱动器阵列的响应速度并最终解决糟糕的磁盘容量使用率。
事实上,目前CPU正是限制IO处理速度得到进一步提升的最大障碍。
DataCore公司的Adaptive Parallel IO(即自适配并行IO)技术能够与VMware的ESXi虚拟机管理程序相协作,从而将多个计算核心--而非传统方案中的一个--纳入到IO处理流程中来。
多核心CPU场景下的串行IO瓶颈概念示意图
DataCore公司提出的并行IO概念
DataCore公司的并行IO软件技术从直观角度来理解,意味着两台采用这项技术的服务器能够将IO效率提升至原有水平的10倍。该公司宣称"应用能够以10倍于原有水平的速度运行,甚至在虚拟环境下亦是如此--也就是说任务完成时间仅为过去的十分之一,"TechValidate在一份面向DataCore公司客户的调查报告当中指出。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。