虚拟SAN存储与数据管理软件供应商DataCore公司宣称其已经为虚拟多核心服务器当中的低下IO速度表现找到了解决办法--即让各计算核心真正发挥作用。

DataCore公司认为这种机制能够切实解决常见的虚拟化多核心服务器IO难题,而非单纯适用于存储领域。
DataCore公司宣称,目前运行在多核心服务器之上的操作系统与容器虚拟化技术仍然在以串行方式处理IO,然而实际工作负载却早已经开始以并行方式覆盖多个CPU计算核心。换言之,这意味着需要由单一IO计算核心承担全部IO处理任务。
DataCore公司表示,以VMware公司的ESXi为例,其只会在多核心CPU当中指定一个计算核心处理IO任务。假设用户选择的是一块八核心处理器,那就意味着其它七个应用核心必须共享单一IO核心的处理能力,对IO进行序列化并争夺数据供给资源,这必然会导致IO队列的形成。
DataCore方面解释称,目前的主流数据库应用普遍属于IO敏感型方案,而虚拟服务器根本无法有效加以应对,也就是说我们面临着"服务器使用率低下"这一历史性难题。这几乎相当于通过增加磁头数据来缩短磁盘驱动器读取行程,进而提升磁盘驱动器阵列的响应速度并最终解决糟糕的磁盘容量使用率。
事实上,目前CPU正是限制IO处理速度得到进一步提升的最大障碍。
DataCore公司的Adaptive Parallel IO(即自适配并行IO)技术能够与VMware的ESXi虚拟机管理程序相协作,从而将多个计算核心--而非传统方案中的一个--纳入到IO处理流程中来。

多核心CPU场景下的串行IO瓶颈概念示意图

DataCore公司提出的并行IO概念
DataCore公司的并行IO软件技术从直观角度来理解,意味着两台采用这项技术的服务器能够将IO效率提升至原有水平的10倍。该公司宣称"应用能够以10倍于原有水平的速度运行,甚至在虚拟环境下亦是如此--也就是说任务完成时间仅为过去的十分之一,"TechValidate在一份面向DataCore公司客户的调查报告当中指出。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。