虚拟SAN存储与数据管理软件供应商DataCore公司宣称其已经为虚拟多核心服务器当中的低下IO速度表现找到了解决办法--即让各计算核心真正发挥作用。
DataCore公司认为这种机制能够切实解决常见的虚拟化多核心服务器IO难题,而非单纯适用于存储领域。
DataCore公司宣称,目前运行在多核心服务器之上的操作系统与容器虚拟化技术仍然在以串行方式处理IO,然而实际工作负载却早已经开始以并行方式覆盖多个CPU计算核心。换言之,这意味着需要由单一IO计算核心承担全部IO处理任务。
DataCore公司表示,以VMware公司的ESXi为例,其只会在多核心CPU当中指定一个计算核心处理IO任务。假设用户选择的是一块八核心处理器,那就意味着其它七个应用核心必须共享单一IO核心的处理能力,对IO进行序列化并争夺数据供给资源,这必然会导致IO队列的形成。
DataCore方面解释称,目前的主流数据库应用普遍属于IO敏感型方案,而虚拟服务器根本无法有效加以应对,也就是说我们面临着"服务器使用率低下"这一历史性难题。这几乎相当于通过增加磁头数据来缩短磁盘驱动器读取行程,进而提升磁盘驱动器阵列的响应速度并最终解决糟糕的磁盘容量使用率。
事实上,目前CPU正是限制IO处理速度得到进一步提升的最大障碍。
DataCore公司的Adaptive Parallel IO(即自适配并行IO)技术能够与VMware的ESXi虚拟机管理程序相协作,从而将多个计算核心--而非传统方案中的一个--纳入到IO处理流程中来。
多核心CPU场景下的串行IO瓶颈概念示意图
DataCore公司提出的并行IO概念
DataCore公司的并行IO软件技术从直观角度来理解,意味着两台采用这项技术的服务器能够将IO效率提升至原有水平的10倍。该公司宣称"应用能够以10倍于原有水平的速度运行,甚至在虚拟环境下亦是如此--也就是说任务完成时间仅为过去的十分之一,"TechValidate在一份面向DataCore公司客户的调查报告当中指出。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。