加快数据传输并将CPU及DDR总线的使用效率推到极致是一个好的数据中心架构的评估标准。日前,PMC将其NVRAM技术与高速网卡公司Mellanox联合,共同展示了NVMeoverRDMA 以及P2P的高速传输实例,有效将CPU以及DDR总线资源解放出来,并显著地提升了数据传输速度。此次联合演示包含两部分,首先展示了如何将NVMe和RDMA组合起来,在远端大规模提供低延迟、高性能、基于块的NVM访问。第二部分的演示则将Mellanox的RDMA对端发起操作与PMC的Flashtec NVRAM加速卡集成在一起,将内存映射的I/O(MMIO)作为一个RDMA目标,以实现远端大规模的持久性内存访问。下面将逐一作详细介绍:
NVM Express over RDMA
NVMe over RDMA (NoR) 展示出将NVMe协议延展到RDMA之上的潜在可能。该项演示中共采用了两台电脑,一台作为客户端,另一台则作为服务器——其中配备Mellanox ConnectX-3 Pro NIC,且通过RoCEv2相连。演示中所采用的NVMe设备即为性能极高而延迟极低的PMC Flashtec™ NVRAM 加速卡。下图为该演示的框图。

此演示显示出,利用RDMA来传送NVMe命令及数据结果带来了微乎其微的额外延迟,且不影响吞吐量。
对比本地NVMe设备与远端NVMe设备的平均延迟,如下表所示,NoR方案中延迟增加低于10微妙。

而另外这组数据则对比了本地NVMe设备与远端NVMe设备吞吐量的测试结果。从下表中可以看出,NoR方案中吞吐量并无减少。

RDMA与PCIe设备之间的点到点传输
此项演示中,通过在标准 RDMA之上增加服务器CPU和DRAM的分流,采用对端发起的方式来将远端客户端与一台服务器的NVRAM/NVMe设备直连。我们将Mellanox提供的RoCEv2-capable ConnectX-3 Pro RDMA NIC与PMC的Flashtec NVRAM加速卡组合在一起,实现NIC和NVRAM之间的对端发起操作。对端发起操作可以实现远端客户对NVRAM加速卡的直接访问,相比传统的RDMA流程,可降低延迟,且有效地释放CPU和DRAM资源。

同样,该演示采用的两台电脑,一台作为客户端,另一台则作为服务器。利用服务器中的PCIe交换设备可以将对端发起操作的性能大大提升。
对比采用传统RDMA和对端发起的RDMA时服务器上可用的后台DRAM带宽,用perftest得出的数据如下:

下表则对采用传统RDMA和对端发起的RDMA时的平均延迟作出了比较,结果得自于 RDMA mode of fio:

RDMA以及NVMe两项技术均处于蓬勃上升的阶段,RDMA能提供远距离、大规模的低延迟及高效率的数据移动,而NVMe则能提供对SSD的低延迟访问。将两项技术相结合能实现非凡的性能。
供货情况
NVRAM对端发起的解决方案包含有Mellanox提供的任意RDMA兼容的HCA以及PMC的FlashtecNVRAM加速卡。与之相辅的还有操作系统的驱动代码(现在Linux上得到支持)以及Mellanox和PMC提供的相关软件。所有实现该项技术所需的代码均可见于www.pmcs.com/lit。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。