加快数据传输并将CPU及DDR总线的使用效率推到极致是一个好的数据中心架构的评估标准。日前,PMC将其NVRAM技术与高速网卡公司Mellanox联合,共同展示了NVMeoverRDMA 以及P2P的高速传输实例,有效将CPU以及DDR总线资源解放出来,并显著地提升了数据传输速度。此次联合演示包含两部分,首先展示了如何将NVMe和RDMA组合起来,在远端大规模提供低延迟、高性能、基于块的NVM访问。第二部分的演示则将Mellanox的RDMA对端发起操作与PMC的Flashtec NVRAM加速卡集成在一起,将内存映射的I/O(MMIO)作为一个RDMA目标,以实现远端大规模的持久性内存访问。下面将逐一作详细介绍:
NVM Express over RDMA
NVMe over RDMA (NoR) 展示出将NVMe协议延展到RDMA之上的潜在可能。该项演示中共采用了两台电脑,一台作为客户端,另一台则作为服务器——其中配备Mellanox ConnectX-3 Pro NIC,且通过RoCEv2相连。演示中所采用的NVMe设备即为性能极高而延迟极低的PMC Flashtec™ NVRAM 加速卡。下图为该演示的框图。

此演示显示出,利用RDMA来传送NVMe命令及数据结果带来了微乎其微的额外延迟,且不影响吞吐量。
对比本地NVMe设备与远端NVMe设备的平均延迟,如下表所示,NoR方案中延迟增加低于10微妙。

而另外这组数据则对比了本地NVMe设备与远端NVMe设备吞吐量的测试结果。从下表中可以看出,NoR方案中吞吐量并无减少。

RDMA与PCIe设备之间的点到点传输
此项演示中,通过在标准 RDMA之上增加服务器CPU和DRAM的分流,采用对端发起的方式来将远端客户端与一台服务器的NVRAM/NVMe设备直连。我们将Mellanox提供的RoCEv2-capable ConnectX-3 Pro RDMA NIC与PMC的Flashtec NVRAM加速卡组合在一起,实现NIC和NVRAM之间的对端发起操作。对端发起操作可以实现远端客户对NVRAM加速卡的直接访问,相比传统的RDMA流程,可降低延迟,且有效地释放CPU和DRAM资源。

同样,该演示采用的两台电脑,一台作为客户端,另一台则作为服务器。利用服务器中的PCIe交换设备可以将对端发起操作的性能大大提升。
对比采用传统RDMA和对端发起的RDMA时服务器上可用的后台DRAM带宽,用perftest得出的数据如下:

下表则对采用传统RDMA和对端发起的RDMA时的平均延迟作出了比较,结果得自于 RDMA mode of fio:

RDMA以及NVMe两项技术均处于蓬勃上升的阶段,RDMA能提供远距离、大规模的低延迟及高效率的数据移动,而NVMe则能提供对SSD的低延迟访问。将两项技术相结合能实现非凡的性能。
供货情况
NVRAM对端发起的解决方案包含有Mellanox提供的任意RDMA兼容的HCA以及PMC的FlashtecNVRAM加速卡。与之相辅的还有操作系统的驱动代码(现在Linux上得到支持)以及Mellanox和PMC提供的相关软件。所有实现该项技术所需的代码均可见于www.pmcs.com/lit。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。