HGST公司在今年的闪存记忆体峰会上再度成为力与美的结合,其相变存储器不出所料又一次牢牢抓住了与会者们的眼球。
在这场热火朝天的闪存业务盛会之上,HGST公司的相变存储器技术拿出了令人叹为观止的参数表现。关注这一技术的朋友可能还记得,去年HGST的相变存储器以PCIe PCM SSD的形式亮相,其延迟约为1.5微秒、IOPS则在300万。而今年其则采用通过InfiniBand实现接入的RDMA PCM SSD为载体,512 B数据块读取延迟仍然控制在2微秒以内、2 KB数据块吞吐能力更是高达每秒3.5 GB。
作为相关背景,易失性DRAM存储方案在电力使用成本方面相当昂贵,而HGST打造的非易失性PCM卡则用不着大量能源支持,同时又能提供与DRAM相仿的速度表现。
InfiniBand互连方案来自Mellanox公司,其市场营销副总裁Kevin Deierling在一份声明当中的指出:“未来,我们的目标是同时利用InfiniBand与融合型以太网RDMA(简称RoCE)为PCM提供接入支持,从而提高可扩展水平并降低内存内应用程序的实现成本。”
HGST公司还宣称其正在构建一套持久性内存体系,并将其描述为一套基于PCM、支持RDMA的内存内计算机集群架构。该公司同时表示,其主机服务器不需要对BIOS或者应用软件本身作出任何修改。
在此次闪存记忆体峰会的演示环节当中,HGST拿出的RDMA连接型PCM存储方案在速度上较NAND更快,不过目前仍没有正式产品可供买家选择。
那么HGST方面目前的进度如何?去年其PCM芯片由美光公司负责提供。让我们假定今年芯片供应方仍然由美光充当,而HGST的思路也确实是销售PCM存储卡产品。就当前的状况看,HGST明显还没有准备好,因为该公司还没有将任何基于PCM的存储卡产品投放市场。
看起来,HGST公司似乎打算开发出一套支持RDMA的InfiniBand或者高速以太网连接PCM设备,并将其添加至服务器内存地址空间当中,从而帮助用户实现即将逐步来临的内存内计算需求。
远程PCM利用远程直接内存访问(简称RDMA)协议在网络基础设施之上——例如以太网或者InfiniBand——实现内存映射,从而构建起一套无缝化的内存内计算大规模部署方案。这套基于网络的方案允许应用程序利用来自多台计算机设备的非易失性PCM存储资源,从而根据实际需求进行规模扩展。
HGST公司CTO Steve Campbell在声明当中表示:“我们与Mellanox方面通力协作,证明非易失性主内存完全可以被映射到整套网络环境当中,同时在延迟与性能水平方面充分满足新兴内存内计算应用程序的具体需要。”
Diablo Technologies公司的Memory 1属于服务器之内依靠DIMM进行连接的NAND存储方案,其作为DRAM的替代与扩展机制存在。HGST公司的持久性内存体系则属于联网解决方案,其能够支持的规模水平远超DRAM替代与扩展这一层面。那么其访问速度是否能够压倒Memory 1呢?目前我们还没有明确答案。
英特尔与美光公司打造出的3D XPoint内存在速度上超过了NAND,但相较于DRAM仍然略逊一筹,而且可能会在2016年年内正式投放市场。目前尚不清楚3D XPoint产品在价格与性能表现方面同PCM相比孰优孰劣。
就目前来讲,HGST公司提供的演示成果只能算是PCM的一次初步尝试。如果大家对此抱有兴趣,不妨亲自到本月11号到13号于加利福尼亚州圣克拉拉市圣克拉拉会展中心召开的2015闪存记忆体峰会上看一看,HGST公司就在645号到647号展台等着您。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。