在数据中心从物理到虚拟演进的过程中,IT架构和工作负载的属性在快速发生变化,给传统存储带来挑战。现在的存储解决方案面临许多挑战,数据量爆炸性增长只是其中之一,其余的挑战还包括:
虚拟化的影响
越来越多的企业将业务进行虚拟化,甚至是“关键业务”应用也逐渐向着虚拟化平台迁移。在这个过程中,用户面临的不仅是虚拟化产生了大量的随机读取,对存储IOPs提出了极高的要求。还要在测试或开发环境下,要保证能够快速为虚拟机配置资源,在实际生产环境中,还要能够快速地对新需求做出相应的反应,并处理如启动风暴这样的问题,以及如何保证虚拟机迁移时存储的可用性。
灵活性和快速响应
影响存储系统的另一个因素是,用户需要更高的灵活性来满足SLA要求。如今,应用服务需求在整个项目周期内已经不会再保持不变了。数据的速度和保护要求不停地在发生变化,有时相当迅速。为了确保满足SLA需求,并且还无需增加成本的情况下,存储系统可以随业务需求变化更加动态地进行管理,是至关重要的。
新的和不断变化的应用需求
为了保证业务的连续运营,企业用户对于数据以及分析洞察的需求越来越大。不断上升的交易吞吐量以及需要处理大量的“数字业务”,实时或近实时分析的需求同样也加大了存储压力。
良好的整合能力满足未来发展需求
传统存储系统在成本、管理、安全或灵活性方面,已经显示出劣势。尽管存储技术在最近几年迅速发展,但是很少有企业是将它们的存储基础架构 “推倒重来”,因此必须找到一种方式,将能够完善并扩充已有的功能的新平台引入进来,来满足当下业务的新需求。
新存储采购评估因素
如上所述,在面临这些存储压力的时候,企业在选择新增存储的时候,主要从哪些方面来进行决策?根据中桥2015年的调研数据显示,在所有参访的用户评估因素有:(1)性价比:谈到高性价比,传统的高性能存储意味着高端存储,主要应对的是业务关键型应用的需求。这些高端存储具有高智能和完备的企业级功能和业务连续性功能,但其成本也极其高昂且使用率低。(2)易管理性:采购新增存储的学习成本,以及其与已有存储设施之间的整合复杂度,都是需要考虑的要素。(3)性能:虚拟机存储需要能够提供灵活动态的应用加速,根据业务需求满足热点数据和业务关键型应用所需的资源。同时,用户对存储的性能和容量的需求在持续增加。这就要求存储具有横向高可扩展性,而且扩展过程中性能不出现瓶颈。(4)容量优化:在虚拟化环境下,没有使用容量优化,会导致存储成本的快速攀升,也无法优化虚拟化的投资回报。另外,不同应用的数据具有不同的生命周期属性。这就要求根据数据价值将数据存储在不同的介质上,高效地发挥存储效用。(5)以负载为核心的动态资源配置:为了最大限度优化以虚拟机为单位的资源,就要求能够细粒度动态配置资源,以满足虚拟化演进过程中对性能的需求。(6)存储生命周期低TCO(无断代升级等):在虚拟化到云的演进过程中,用户需要经济、可靠、稳定的存储架构平台,对存储的生命周期使用效率提出更高需求。
在应对业务需求不断并且快速变化的今天,企业需要针对自身痛点,合理规划存储采购,从经济高效以及满足未来发展需求的角度,来考虑新增存储。
好文章,需要你的鼓励
三星与AI搜索引擎Perplexity合作,将其应用引入智能电视。2025年三星电视用户可立即使用,2024和2023年款设备将通过系统更新获得支持。用户可通过打字或语音提问,Perplexity还为用户提供12个月免费Pro订阅。尽管面临版权争议,这一合作仍引发关注。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
苹果M5 MacBook Pro评测显示这是一次相对较小的升级。最大变化是M5芯片,CPU性能比M4提升约9%,多核性能比M4 MacBook Air快19%,GPU性能提升37%。功耗可能有所增加但电池续航保持24小时。评测者认为该产品不适合M4用户升级,但对使用older型号用户仍是强有力选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。