EMC打造的全闪存VNX阵列VNX-F系列产品即将迎来全面升级,其可用存储容量会很快扩展至172TB、每GB存储资源成本不到5美元,同时采用一款新的驱动器外壳以及与之配套的高容量驱动器组件。
该系列产品属于块存储阵列,数据访问通过1/10GbitE iSCSI、FCoE或者8Gbit/s光纤通道来实现。系列中共包含两款具体产品型号,分别为F5000与F7000。二者都采用多核心至强E5 2600 CPU作为计算中枢,并在配备双控制器的同时通过6Gbit/s SAS与磁盘阵列外壳相对接。这些系统都以最新VNX2架构为基础构建而成,同时引入了于去年九月才刚刚面世的MCx多计算核心优化技术。
其中F5000拥有两块至强四核心1.8GHz处理器,而F7000则采用主频为2.2GHz的八核心CPU。
两款产品都具备RAID 5保护机制并提供高达“五个九”的可用性承诺(即99.999%正常运行时间)——实现措施包括,举例来说,镜像写入缓存与主动热备用技术。
其搭配的磁盘处理器外壳为一台3U设备,其中包含总计25个2.5英寸驱动器插槽。除此之外,大家也可以选择体积为2U且同样能够容纳25块2.5英寸磁盘的驱动器阵列外壳(简称DAE)。
配备120插槽DAE的VNX-F存储阵列
根据我们了解到的情况,如果EMC公司支持用户使用1.6TB SSD(相信很快即可实现),那么VNX-F7000将拥有高达172TB的最大存储空间容纳能力,尼古拉斯公司总经理Aaron Rakers告诉我们。他同时指出,EMC公司还将在不久的将来针对VNX-F7000阵列推出一款新型3U 120插槽驱动器阵列外壳(简称DAE),这意味着用户采用1.6TB磁盘驱动器即可拥有最高172TB的可用存储空间。
两款阵列都提供基于控制器的静止数据加密功能。客户可以根据自己的实际需求实现这一功能:VMware管理员需要使用Virtual Storage Integrator(简称VSI),而Windows、Hyper-V、VMware以及Xen Server等环境则需要使用具备应用识别配置能力的EMC Storage Integrator工具。EMC Storage Analytics提供的服务器到存储分析方案则由vCenter Operations Manager分析代码负责实现。
这套阵列的可选软件包括一款数据保护套件、一款应用程序保护套件、静止数据加密以及Unisphere Management Suite。
VNX-F在部分配置方案中公布的每GB低于5美元使用成本仍然无法同Pure的每GB可用容量3到4美元(经过重复数据删除处理)水准相比肩,但客户们能够直接继承全部现有VNX数据服务及管理设施,这相当于以曲线方式实现了成本节约。相比之下,Pure Storage的FA-450阵列能够最高扩展至70TB原始容量,并宣称其在经过重复数据删除处理后的实际可用容量将达到250TB。
惠普的StoreServ 7450最大容量扩展上限为4670TB,而且号称每GB存储资源成本仅为2美元。Tegile的T3800阵列则据称在经过重复数据删除之后可提供1.68PB最高可用容量,且按照可用容量计算的话其每GB使用成本仅为1美元。
好文章,需要你的鼓励
CloudBees首席执行官Anuj Kapur表示,AI可能重新测试DevOps的基础假设,但警告不要为追求效率而创建黑盒代码。他指出,一些因担心错失机会而匆忙采用AI生成代码的客户正开始放缓步伐,变得更加谨慎。Kapur认为,将整代软件外包给提示工程将创建非人类生成的黑盒代码,虽然效率高但质量、测试覆盖率和漏洞问题值得担忧。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
数据网络安全公司Rubrik宣布收购AI初创公司Predibase,交易金额在1-5亿美元之间。Predibase专注于帮助企业训练和微调开源AI模型。此次收购将使Rubrik用户能够通过Amazon Bedrock、Azure OpenAI和Google Agentspace等平台加速构建AI智能体。这是继Salesforce、Snowflake等公司之后,又一家通过收购来增强AI智能体技术栈的企业。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。