数据保留策略一些好的实践
设计一种数据保留策略时,首要考虑的就是组织为什么要进行数据归档。在这里有一些数据保留策略的最佳实践。
Brien M. Posey是一位微软认证系统工程师,曾获微软Exchange Server、Windows Server 和Internet Information Server (IIS)的MVP奖。Brien担任一个全国连锁性医院的CIO,曾经在Fort Knox负责信息管理系。
设置数据保留策略的时候,除了合规性问题需要考虑,还应考虑哪些因素?
设计一种数据保留策略时,首要考虑的就是组织为什么要进行数据归档。在这里有一些数据保留策略的最佳实践。
在我们获取这些数据保留策略的最佳实践之前,需要关注以下两个问题:IT部门需要释放某些服务器的空间吗?这些服务器的内容越发杂乱无章,定位数据越来越难了吗?这两个问题对数据保留策略的构建方式有着重大的影响。
结合考虑以下问题,第一个是了解哪些数据需要保持在线状态,哪些数据应该被归档。通常情况下,这个决定是基于数据的时间点,但也有例外。在某些情况下,检查诸如数据最后一次被访问,数据类型等标准也是同样重要的。
假设一下,例如,一个组织的文件服务器上有大量的空闲空间,但是他们想减少一些杂乱无章的数据。针对这个目标,他们决定创建一个归档策略,将超过5年的数据移动到归档中,然后将超过10年的旧数据删除。
虽 然这听起来像是创建一个数据保留策略的合理做法,但它可能带来危害。例如,如果一个电子表格在六年前创建但是一直在定期更新,将会发生什么呢?如果数据保 留策略只看创建时间,然后电子表格会被存档,即使它是经常被使用的。依据最后访问日期而不是创建日期的保留策略将会是更有效的。
数据保留策略在其他方面也可能会适得其反。比如说,11年前你的组织签署了15年的办公楼租赁协议。考虑一种极端情况,没有人在过去10年看过该文件,但这些文件真的是要删除的东西吗?
设置数据保留策略一定不可掉以轻心,并且要重视实施策略的长期后果。
0赞好文章,需要你的鼓励
推荐文章
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。