数据保留策略一些好的实践
设计一种数据保留策略时,首要考虑的就是组织为什么要进行数据归档。在这里有一些数据保留策略的最佳实践。
Brien M. Posey是一位微软认证系统工程师,曾获微软Exchange Server、Windows Server 和Internet Information Server (IIS)的MVP奖。Brien担任一个全国连锁性医院的CIO,曾经在Fort Knox负责信息管理系。
设置数据保留策略的时候,除了合规性问题需要考虑,还应考虑哪些因素?
设计一种数据保留策略时,首要考虑的就是组织为什么要进行数据归档。在这里有一些数据保留策略的最佳实践。
在我们获取这些数据保留策略的最佳实践之前,需要关注以下两个问题:IT部门需要释放某些服务器的空间吗?这些服务器的内容越发杂乱无章,定位数据越来越难了吗?这两个问题对数据保留策略的构建方式有着重大的影响。
结合考虑以下问题,第一个是了解哪些数据需要保持在线状态,哪些数据应该被归档。通常情况下,这个决定是基于数据的时间点,但也有例外。在某些情况下,检查诸如数据最后一次被访问,数据类型等标准也是同样重要的。
假设一下,例如,一个组织的文件服务器上有大量的空闲空间,但是他们想减少一些杂乱无章的数据。针对这个目标,他们决定创建一个归档策略,将超过5年的数据移动到归档中,然后将超过10年的旧数据删除。
虽 然这听起来像是创建一个数据保留策略的合理做法,但它可能带来危害。例如,如果一个电子表格在六年前创建但是一直在定期更新,将会发生什么呢?如果数据保 留策略只看创建时间,然后电子表格会被存档,即使它是经常被使用的。依据最后访问日期而不是创建日期的保留策略将会是更有效的。
数据保留策略在其他方面也可能会适得其反。比如说,11年前你的组织签署了15年的办公楼租赁协议。考虑一种极端情况,没有人在过去10年看过该文件,但这些文件真的是要删除的东西吗?
设置数据保留策略一定不可掉以轻心,并且要重视实施策略的长期后果。
0赞好文章,需要你的鼓励
推荐文章
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。