在数据存储中使用纠删码和远程复制的建议
对于IT部门来说,远程复制是灾难恢复中的关键技术。Ethan Miller就数据存储阵列中纠删码和远程复制技术的使用场景作了分析。
Ethan Miller是加利福尼亚大学的一名计算机科学教授,主要研究纠删码以及如何在存储系统中使用纠删码。
对于IT部门来说,远程复制是灾难恢复中的关键技术。加州大学圣克鲁兹分校的教授分析了在数据存储阵列中纠删码和远程复制技术的使用场景。
对于存储管理员来说,对于采用纠删码还是远程复制,有什么建议?
目前大部分IT组织都会在自己的本地存储中使用纠删码,他们通常使用诸如RAID5、RAID6这种类型的纠删码。然而,如果你关注的是灾难恢复—— 当你的数据中心发生故障时是否会出现数据可用性或数据丢失的问题——那么你需要在多个站点之间部署远程复制机制。大部分数据中心不会超过双节点或三节点, 所以它们可能只有一份或两份数据备份。在这种情况下,你需要在数据中心站点之间部署远程复制,因为纠删码在站点数量较少的情况下是无法工作的。当然,你依 然可以在站点内部使用纠删码,例如RAID5或RAID6,它们会让你的数据更可靠。而跨站点部署纠删码对于大部分组织的IT部门来说是不明智的。
如 果你拥有两到三家云服务提供商的支持,并且有三个数据中心,理论上你是可以在站点间使用纠删码的。但问题在于纠删码需要通过大部分完好的站点来恢复数据, 这在有两到三个外部的云服务提供商和三个自己的数据中心的环境下是不实际的,因为你至少需要从其中三个站点来读取数据。
不过,只要你不介意花费数天时间来恢复数据,你还是可以部署跨站点纠删码的。但如果你需要在几分钟内恢复业务,远程复制将会是你的明智选择,并且你需要在站点间建立一个高带宽或低延迟的网络。
0赞好文章,需要你的鼓励
推荐文章
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。