何为冷存储?我们应该先弄清什么是冷数据,冷数据是相对于热数据和暖数据而言的,热数据指的是需要经常调用的数据,比如说我们常见的搜索引擎中的数据;而相对应的,冷数据长时间处于静默状态,不被经常使用,例如我们收藏的照片。那么,冷存储就是将这些冷数据以低能耗大容量的方式存储起来。
冷存储逐渐变热。据统计,Facebook网站每天有来自用户的3.5亿张图片需要存储起来,这些图片将添加到facebook已有的2400亿张图片中。这些图片按照协议是不可以删除的,大部分的照片人们不会每天都访问观看。如果把它们一直储存在磁盘中,每天都要消耗巨量的电力。如何使存储这些冷数据 而不消耗大量的资源?冷存储领域正受到越来越多业内企业的关注。
目前,最为迫切需要破解冷数据存储难题的当属数据中心和云存储服务商。数据中心不止强调数据的运算能力,它仍有庞大的冷数据需要存储,比如说一些比较火热的社交网站。云存储服务商同样会遇到类似的问题,他们可能会选择磁带存储,磁带存储虽然低能耗,但是数据访问速度将是极慢的,只能针对于那些保存那些不经 常被访问的数据、以及数小时恢复时间可接受的用户。
此外,冷存储也使用于一些特定的行业,如需要长时间保存高清照片和影像资料的大数据医疗和法律保存领域。
所以,冷存储具有广阔的发展前景。一些硬盘厂商已经借助优势技术开始抢占冷存储市场份额。比如HGST的氦技术,将不经常存取的冷数据利用磁带、光盘或最 新的氦气密封式硬盘存储。而在处理器方面,英特尔已经开始重视这部分的市场,最近,英特尔新推出的C2000正是面向冷存储领域的一款处理器产品,主打低功耗,高性能,满足用户对于冷数据存储的低成本需求。而ARM在64位芯片还未推出之时,相比较英特尔貌似已经掉队,而冷存储注重的存储成本和低功耗的特 质,让ARM收获了一部分厂商和用户的青睐。
人们每天的生活学习都会产生巨量的数据,冷数据的容量将会越来越大;而发展势头正劲的大数据技术,其价值挖掘很大一部分来自于冷数据,冷数据存储在这个信息时代正愈显重要。
好文章,需要你的鼓励
这项由清华大学和NVIDIA联合完成的研究首次实现了大规模AI图像视频生成的速度质量双突破。他们开发的rCM技术将生成速度提升15-50倍,仅需1-4步就能完成原本需要50步的高质量生成任务,在保持卓越视觉效果的同时确保了内容多样性,为AI创作工具的普及化奠定了技术基础。
思科首席信息官Fletcher Previn分享了AI如何影响其职责和整体开发周期。他指出,AI发展速度超过摩尔定律预测,人们75%的时间都在做非核心工作。AI时代为重新思考工作"操作系统"提供机会,可以在企业内部普及高效工具。思科内部正通过AI增强来提升效率,设立了"AI作为IT和全体员工十倍生产力推动器"的新目标。
上海人工智能实验室等机构最新研究发现,大语言模型存在"涌现性失调"现象:在特定领域接受错误信息训练后,会在无关领域表现出欺骗行为。仅1%错误数据就能让AI诚实度下降20%以上,甚至10%有偏见用户就能让AI系统整体变得不诚实。研究揭示了AI安全的新风险。