何为冷存储?我们应该先弄清什么是冷数据,冷数据是相对于热数据和暖数据而言的,热数据指的是需要经常调用的数据,比如说我们常见的搜索引擎中的数据;而相对应的,冷数据长时间处于静默状态,不被经常使用,例如我们收藏的照片。那么,冷存储就是将这些冷数据以低能耗大容量的方式存储起来。
冷存储逐渐变热。据统计,Facebook网站每天有来自用户的3.5亿张图片需要存储起来,这些图片将添加到facebook已有的2400亿张图片中。这些图片按照协议是不可以删除的,大部分的照片人们不会每天都访问观看。如果把它们一直储存在磁盘中,每天都要消耗巨量的电力。如何使存储这些冷数据 而不消耗大量的资源?冷存储领域正受到越来越多业内企业的关注。
目前,最为迫切需要破解冷数据存储难题的当属数据中心和云存储服务商。数据中心不止强调数据的运算能力,它仍有庞大的冷数据需要存储,比如说一些比较火热的社交网站。云存储服务商同样会遇到类似的问题,他们可能会选择磁带存储,磁带存储虽然低能耗,但是数据访问速度将是极慢的,只能针对于那些保存那些不经 常被访问的数据、以及数小时恢复时间可接受的用户。
此外,冷存储也使用于一些特定的行业,如需要长时间保存高清照片和影像资料的大数据医疗和法律保存领域。
所以,冷存储具有广阔的发展前景。一些硬盘厂商已经借助优势技术开始抢占冷存储市场份额。比如HGST的氦技术,将不经常存取的冷数据利用磁带、光盘或最 新的氦气密封式硬盘存储。而在处理器方面,英特尔已经开始重视这部分的市场,最近,英特尔新推出的C2000正是面向冷存储领域的一款处理器产品,主打低功耗,高性能,满足用户对于冷数据存储的低成本需求。而ARM在64位芯片还未推出之时,相比较英特尔貌似已经掉队,而冷存储注重的存储成本和低功耗的特 质,让ARM收获了一部分厂商和用户的青睐。
人们每天的生活学习都会产生巨量的数据,冷数据的容量将会越来越大;而发展势头正劲的大数据技术,其价值挖掘很大一部分来自于冷数据,冷数据存储在这个信息时代正愈显重要。
好文章,需要你的鼓励
VMware宣布将终止现有渠道合作伙伴计划,新计划采用邀请制,大幅减少授权合作伙伴数量。未受邀合作伙伴将于2025年7月15日收到不续约通知,可继续交易至10月31日。白标计划也将同时终止。此举是18个月内VMware第二次重大合作伙伴调整,旨在专注与少数核心云服务提供商深度合作。客户可能面临续约困难、服务质量下降和成本上升等影响。
StepFun公司推出的Step1X-Edit是首个能够媲美GPT-4o和Gemini2 Flash等商业模型的开源图像编辑AI。该模型通过整合多模态语言理解和扩散图像生成技术,能够处理11种编辑任务,在新构建的GEdit-Bench基准测试中表现优异,为图像编辑技术的民主化开辟了新道路。
谷歌DeepMind和伦敦大学学院研究发现,大语言模型在面对反驳时会迅速失去信心并改变答案,即使反驳是错误的。研究显示LLM既会对自己的答案过度自信,又对批评异常敏感,表现出与人类相似但又独特的认知偏差。这种行为对多轮对话AI系统构成威胁,最新信息可能对LLM推理产生不成比例的影响。
BluOrion公司开发的ZClip是一种智能梯度裁剪算法,解决了大型语言模型训练中的梯度爆炸和损失飙升问题。通过Z分数统计检测和动态调整策略,ZClip能够自适应地控制梯度幅度,相比传统固定阈值方法提升训练效率35%以上,同时显著降低训练失败风险,为大模型训练提供了更稳定、高效的解决方案。