存储业界已经明确认识到物理阵列市场的持续衰退。廉价的云存储与虚拟阵列方案正在成本优势的驱动下迅速崛起,而且在实用性方面往往并不会带来任何影响;有鉴于此,我们确实很难证明为大多数应用程序配备专用阵列到底有何必要。
Forrester自然也清楚这一点,分析师Henry Baltazar更作出声明称,我们应该“利用应用程序作为下一套存储阵列”。
Baltazar估计称目前的阵列产品主要供应给x86服务器系统,但其销售形式多年以来始终没有变化——一直作为非弹性资源存在。此外,阵列的吸引力还主要体现在价格优势层面,但随着近一段时间云服务与各类资源池机制在x86服务器上的不断涌现、前者的这种优势光环正在迅速褪去。
现在是时候正视阵列产品在成本与灵活性方面的局限了,Baltazar表示,如今我们应该转换思路、将虚拟阵列作为未来存储方案选择中的关注重点。
他还在博文中将惠普、Sanbolic以及Maxta作为值得我们认真考量的虚拟阵列供应商,同时指出EMC、IBM以及NetApp同样开始进军虚拟阵列业务。VMware与DataCore虽然也提供虚拟阵列产品,但在他眼中尚不值得一提。
“现在正是将存储技术更多地作为应用程序加以对待的良好时机,而且以闪存SSD为代表的商用硬件组件在价格上也往往要比企业级存储供应商提供的存储介质更为低廉,”他在文章中写道。
之所以会在这里提到闪存,是因为众多阵列供应商开始越来越多地利用闪存机制对产品的I/O能力加以优化,而这一趋势正在将更多固态存储设备引入数据中心环境。Baltazar同时指出,如果连工程技术因素都不再产生影响,那么向虚拟存储机制的转换可谓恰逢其时。
当然,长期关注存储技术动态的朋友们很清楚,Baltazar的这篇博文其实并没有什么实质性的新内容。不过他所表达的观点确实足够客观,而且如此直言不讳的表达也值得大家认真关注。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。