通用电气近几年一直在宣传应用大数据的潜在优势,并在去年迈出了重要的一步——在Pivotal上投入1.05亿美元。通用电气日前宣布Pivotal日趋成熟回报在望。
通用电气软件副总裁Bill Ruh是公司高层推广Pivotal应用的干将。根据他提供的资料,通用电气利用Pivotal的大数据套件(Big Data Suite)和EMC的设备在90天里建成了旗下航空集团所需要的系统,此系统连接多达25个航空公司的客户,可以用到所有的数据和分析。通用电气是主要的飞机发动机制造商之一。利用机器数据和分析的一个关键目标是提供更好的预测性维护。
通用电气副总裁Bill Ruh
Ruh在接受采访时表示,“我们希望摆脱疲劳警报的心态。我们想知道一个部件什么时候可能会出毛病,我们监视各种使用模式,以了解如何才能使各个部件更高效、更优化。”如果能在实际中能够使燃气轮机的效能提高一、两个百分点,加在起来就可以节省巨额的开支。
15,000个航班每飞一次的数据归总后可达14GB,然后需要一定的时间对这些数据进行分析。得到的结果有时候似乎直白得很,但提供的思路却可以防止出现大问题,例如,对在恶劣的、多尘的环境里工作的喷气发动机的清洗应该频繁一些。
Ruh指,过一遍所需的数据以找到一个维修问题,用传统的方法可能需要30天。而现在运行主要的分析可以在20分钟内完成。将所有的数据——关系型数据里的行、列数据加上那么不“那么有组织的”非关系型的东西——放在一个库里,然后在分析时能够访问这个库,这就是时下科技供应商推崇的 “数据湖”概念。
Pivotal首席执行官Paul Maritz表示,“这是一个非常生动的例子,这个例子表明一些客户在过去不能有效地完成的事,现在客户可以从数据里获得价值。这个例子还表明客户可以从不同的数据源获得价值。”
Ruh称,通用电气并不会就此止步。通用电气的医疗保健事业部制造CAT扫描仪和其他设备,医疗保健事业部也在推出的Pivotal技术,通用电气的电力、石油和天然气、铁路和运输部门随后也会走出同一步。同时,通用电气正在将旗下的Predix软件与Pivotal技术进行整合。
显然,市值达2570亿美元的通用电气有财力花大钱做这种事,但是Maritz表示,他预计该技术将来会通过SaaS模式交付,因而规模较小的公司也可以受益。
想了解Pivotal计划详情的读者,可以在网上搜到Paul Maritz在2014年数据结构大会上的有关新型的Pivotal数据应用的发言视频。
好文章,需要你的鼓励
这篇研究提出了OThink-R1,一种创新的大型推理模型,能够像人类一样在快速直觉思维和慢速深度推理之间自动切换。研究者发现,现有推理模型即使面对简单问题也会生成冗长的推理过程,导致计算资源浪费。通过分析推理轨迹并使用LLM评判员区分冗余和必要推理,OThink-R1能根据问题复杂度动态调整思考深度。实验表明,该方法平均减少了23.4%的生成文本量,同时保持或提高了准确率,代表了向更高效、更人性化AI推理系统迈出的重要一步。
这项研究提出了SHARE,一种新型文本到SQL修正框架,它利用三个小型语言模型(SLM)协同工作,实现高效精准的SQL错误修正。SHARE首先通过基础行动模型将SQL转换为行动轨迹,再经过模式增强模型和逻辑优化模型的层次化精细化修正。研究团队还创新性地提出了层次化自演化训练策略,大大提高了训练数据效率。实验结果表明,SHARE在多个基准测试上显著提升了SQL生成准确率,计算成本仅为传统方法的十分之一,并展现出强大的泛化能力,适用于各种生成器模型和SQL方言。
这项由香港大学和南京大学等机构研究人员联合开发的双专家一致性模型(DCM)解决了高质量视频生成中的效率难题。研究团队发现扩散模型蒸馏过程中存在优化冲突:早期阶段负责语义布局与运动,后期阶段关注细节精修,两者学习动态差异显著。DCM创新性地将这两个任务分配给不同的专家模型,通过参数高效的实现方式,使模型仅需4步即可生成接近50步原始模型质量的视频,大幅提升生成速度,为实用化AI视频创作铺平道路。
这项研究介绍了QARI-OCR,一种基于Qwen2-VL-2B-Instruct模型微调的阿拉伯文字识别系统。研究团队通过三阶段合成数据训练,成功解决了阿拉伯文字识别中的主要挑战:曲线连笔特性、上下文变化的字母形状和发音符号。QARI v0.2模型创下了0.061的字符错误率和0.160的单词错误率,超越了现有开源解决方案,为阿拉伯文化遗产的数字化保存提供了重要工具。