通用电气近几年一直在宣传应用大数据的潜在优势,并在去年迈出了重要的一步——在Pivotal上投入1.05亿美元。通用电气日前宣布Pivotal日趋成熟回报在望。
通用电气软件副总裁Bill Ruh是公司高层推广Pivotal应用的干将。根据他提供的资料,通用电气利用Pivotal的大数据套件(Big Data Suite)和EMC的设备在90天里建成了旗下航空集团所需要的系统,此系统连接多达25个航空公司的客户,可以用到所有的数据和分析。通用电气是主要的飞机发动机制造商之一。利用机器数据和分析的一个关键目标是提供更好的预测性维护。
通用电气副总裁Bill Ruh
Ruh在接受采访时表示,“我们希望摆脱疲劳警报的心态。我们想知道一个部件什么时候可能会出毛病,我们监视各种使用模式,以了解如何才能使各个部件更高效、更优化。”如果能在实际中能够使燃气轮机的效能提高一、两个百分点,加在起来就可以节省巨额的开支。
15,000个航班每飞一次的数据归总后可达14GB,然后需要一定的时间对这些数据进行分析。得到的结果有时候似乎直白得很,但提供的思路却可以防止出现大问题,例如,对在恶劣的、多尘的环境里工作的喷气发动机的清洗应该频繁一些。
Ruh指,过一遍所需的数据以找到一个维修问题,用传统的方法可能需要30天。而现在运行主要的分析可以在20分钟内完成。将所有的数据——关系型数据里的行、列数据加上那么不“那么有组织的”非关系型的东西——放在一个库里,然后在分析时能够访问这个库,这就是时下科技供应商推崇的 “数据湖”概念。
Pivotal首席执行官Paul Maritz表示,“这是一个非常生动的例子,这个例子表明一些客户在过去不能有效地完成的事,现在客户可以从数据里获得价值。这个例子还表明客户可以从不同的数据源获得价值。”
Ruh称,通用电气并不会就此止步。通用电气的医疗保健事业部制造CAT扫描仪和其他设备,医疗保健事业部也在推出的Pivotal技术,通用电气的电力、石油和天然气、铁路和运输部门随后也会走出同一步。同时,通用电气正在将旗下的Predix软件与Pivotal技术进行整合。
显然,市值达2570亿美元的通用电气有财力花大钱做这种事,但是Maritz表示,他预计该技术将来会通过SaaS模式交付,因而规模较小的公司也可以受益。
想了解Pivotal计划详情的读者,可以在网上搜到Paul Maritz在2014年数据结构大会上的有关新型的Pivotal数据应用的发言视频。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。