印度领先手机制造商Micromax Informatics已在其新的虚拟化数据中心内部署了创新的博科以太网矩阵技术,以期支持未来几年业务的增长。
据IDC的数据显示,在Micromax等自主开发厂商的推动下,印度智能手机市场在2013年出现了出货量从2012年的1620万台增长到4400万台的激增。 Micromax也已成为印度第二大智能手机制造商,占印度全国16%的市场份额,在东南亚邻国市场也有强劲的表现。 Micromax今年还开展了俄罗斯业务,为进一步进军东欧市场投石问路。
尽管在本国以外鲜为人知,Micromax已经是全球第十大手机制造商了,每月出货超过200万台手机,其中三分之一是智能手机。但目前Micromax国际收入仍然不到其总收入的10%,公司的目标是在五年内让国际收入增至总收入的50%。 建设下一代数据中心是Micromax扩张计划的一个重要组成部分。Micromax数据中心能够支持仓库管理、工厂运营以及一个呼叫中心(过去三年,呼叫中心的席位已从50个增加到200个)。
Micromax Informatics公司首席信息官Atul Nigam表示:“鉴于Micromax大幅增长的步伐,树立能够从容应对新市场挑战的地位,构建一个灵活可扩展的数据中心至关重要。数据中心虚拟化显然是必经之路。因此,我们最迫切的需求就是找到一个能够支持高度运营自动化,同时灵活适应数据中心快速发展的网络基础设施。”
Micromax最终选择低延迟的Brocade VDX 6740 10千兆以太网(GbE)交换机作为其新数据中心的网络基础,这要归功于Brocade VCS Fabric技术易于配置,运营自动化,高成本效益的性能和高可扩展性等强大实力。Brocade ADX应用交付交换机也已在Micromax的新数据中心部署,用以提升应用程序性能,提高应用程序可用性,并改进安全性。
Micromax一开始是从运行在四个刀片服务器机架上的约40个虚拟机(VM)入手的。Micromax预计将在一年内扩展到100台虚拟机和10个服务器机架。Brocade VDX 6740交换机已与24个最初启用的光纤端口一起部署,如果日后需要更多服务器连接,Micromax可以授权额外8个端口,使每个交换机的端口最多达到64个。
这种灵活、高成本效益的“按需付费”许可模式让Micromax能够迅速扩展数据中心网络,应对不断变化的业务需求。也可将更多交换机加入使用4个内置40GbE连接端口的Brocade VCS逻辑机箱。互联交换机不仅能作为一个无缝以太网矩阵来运行,也能作为独立虚拟设备来运行,由于配置和监控显著简化,可降低Micromax的运营成本。
博科印度区域总监Edgar Dia表示:“按需付费的可扩展性、低运营成本以及高级网络虚拟化功能的组合,让Brocade VDX交换机成为云数据中心的卓越选择,其中就包括Micromax开发的数据中心。与传统数据中心交换架构相比,Brocade VCS Fabric技术在处理虚拟机移动性以及服务东/西大量流量方面弹性更大、可扩展性更强,并且效率更高。”
Dias补充道:“Micromax锐意进取的国际扩张计划意味着新数据中心必须根据业务在新市场的发展情况,满足快速增长的需求。部署新的博科数据中心网络基础,问题迎刃而解。一开始,它以非常合理的前期成本来部署小型Brocade VDX交换机,并且能够根据需求轻松向上扩容。”
与其它所有Brocade VDX交换机一样,Brocade VDX 6740交换机支持自动形成、自我修复的以太网矩阵。配置和设备信息将在所有交换机之间共享,允许添加或删除矩阵节点,物理或虚拟服务器将重新安置,无需手动重新配置矩阵。例如,当矩阵中加入或移除一台虚拟机时,可感知博科虚拟机的自动化网络不再需要手动配置端口,从而提高了自动化水平和运营效率。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。