企业正在寻求以创新方式管理尽可能多的数据及数据源。尽管Hadoop、NoSQL等技术提供了应对大数据问题的具体方法,但是这些技术却可能引入数据孤岛,导致形成关键洞察力所需的数据访问及数据分析复杂化。为了最大化信息价值,更好的处理大数据,企业需要逐步改变数据管理架构,使之变成大数据管理系统,以无缝整合各种来源、所有类型的数据,包括Hadoop、关系数据库以及NoSQL。大数据管理系统在简化所有数据访问的同时,还应该帮助企业利用人员的现有技能,保持企业级数据安全性及数据治理能力,并且保护敏感信息,满足监管要求。
为了满足企业需求,提供全面的大数据解决方案,甲骨文公司推出了Oracle大数据SQL(Oracle Big Data SQL) 。该产品是大数据管理系统极其重要的组成部分。Oracle大数据SQL打通了数据孤岛,并简化信息访问和发现过程,可以帮助客户跨Hadoop、NoSQL和Oracle数据库运行同一个SQL查询,从而最大限度减少数据移动,同时提高性能,最大限度的消除数据孤岛问题。Oracle大数据SQL使客户能够更方便、更快地发现深度信息,助力客户赢得竞争优势,同时保护数据安全,遵从数据治理政策。此外,Oracle大数据SQL还使企业能够充分利用工作人员的现有SQL技能以及在SQL应用上的现有投资。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。