企业正在寻求以创新方式管理尽可能多的数据及数据源。尽管Hadoop、NoSQL等技术提供了应对大数据问题的具体方法,但是这些技术却可能引入数据孤岛,导致形成关键洞察力所需的数据访问及数据分析复杂化。为了最大化信息价值,更好的处理大数据,企业需要逐步改变数据管理架构,使之变成大数据管理系统,以无缝整合各种来源、所有类型的数据,包括Hadoop、关系数据库以及NoSQL。大数据管理系统在简化所有数据访问的同时,还应该帮助企业利用人员的现有技能,保持企业级数据安全性及数据治理能力,并且保护敏感信息,满足监管要求。
为了满足企业需求,提供全面的大数据解决方案,甲骨文公司推出了Oracle大数据SQL(Oracle Big Data SQL) 。该产品是大数据管理系统极其重要的组成部分。Oracle大数据SQL打通了数据孤岛,并简化信息访问和发现过程,可以帮助客户跨Hadoop、NoSQL和Oracle数据库运行同一个SQL查询,从而最大限度减少数据移动,同时提高性能,最大限度的消除数据孤岛问题。Oracle大数据SQL使客户能够更方便、更快地发现深度信息,助力客户赢得竞争优势,同时保护数据安全,遵从数据治理政策。此外,Oracle大数据SQL还使企业能够充分利用工作人员的现有SQL技能以及在SQL应用上的现有投资。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。