Google已经弃用其曾经的三大核心技术之一MapReduce,因为该系统已不能满足这家互联网巨头的数据分析需求。
于周三在旧金山举行的Google I/O大会上,Google宣布了这一消息。取而代之的,是一个新开发的称为Cloud Dataflow的云分析系统。
MapReduce一直是一个非常受欢迎的基础架构和编程模型,用于在服务器集群上做并行分布式计算。它也是Apache Hadoop大数据基础架构平台的一个基础,后者已经得到广泛的部署,并成为许多公司的商业产品的核心。
然而,该技术已无法处理Google当前希望分析的数据量。Google技术基础设施高级副总裁Urs Hölzle表示,当数据规模达到PB级别,MapReduce变得太麻烦。
“我们真的不再使用MapReduce了,”Hölzle在他的主题演讲中说,该公司“多年前”就停止使用该系统。

在旧金山举行的2014 Google I/O大会上,Google技术基础设施高级副总裁Urs Hölzle宣布了一项新的云分析系统Cloud Dataflow。
Cloud Dataflow还将作为一项服务提供给使用Google云计算平台的开发者,它没有MapReduce的规模限制。
“Cloud Dataflow是数十年数据分析经验的成果,”Hölzle说。“和任何其他的系统相比,它的运行速度更快,扩展性更好。”
他表示,Cloud Dataflow是一项自动优化、部署、管理和扩展的全面的管理服务。它允许开发人员使用统一的编程轻松地创建复杂的管道用于批处理和流媒体服务,并且可以迅速抓取任意大型数据集。
Google还表示,Cloud Dataflow可以通过动态图显示数据流,Google演示了在本届世界杯上巴西对阵克罗地亚时的Twitter社区讨论追踪,当裁判“误判点球”时,网友的反映变化一目了然。
Google认为,Cloud Dataflow所有的这些特性解决了MapReduce搞不定的工作:它很难迅速摄取数据,它需要很多不同的技术,批处理和流是无关的,还有,MapReduce集群的部署和操作始终是必需的。
好文章,需要你的鼓励
AI改变的远不止一间课堂,而是学生的学习方式、未来的职场场景和社会对工作者能力的要求,整个商业文明中的每一位参与者,都将被推着一起改变。
这项研究开发了CaptionQA系统,通过测试AI生成的图片描述能否支持实际任务来评估其真正价值。研究发现即使最先进的AI模型在图片描述实用性方面也存在显著不足,描述质量比直接看图时下降9%-40%。研究涵盖自然、文档、电商、机器人四个领域,为AI技术的实用性评估提供了新标准。
随着大语言模型的不断涌现,Z世代正成为与AI技术共同成长的新一代商业领袖。他们在数字环境中表现出更强的自信,善于协作而非单纯竞争。斯坦福创新者穆拉冈提出AI发展的三种情景:全面禁止、野蛮生长或人机内容分流共存。Z世代企业家需要掌握平台所有权、利用AI扩大规模、打造独特品类和实现超个性化等四大要素,以道德和有益的方式驾驭AI技术。
以色列理工学院研究团队提出了一种将专家混合模型融入YOLOv9目标检测的创新方法。该方法让多个专门化的YOLOv9-T专家分工协作,通过智能路由器动态选择最适合的专家处理不同类型图像。实验显示,在COCO数据集上平均精度提升超过10%,在VisDrone数据集上提升近30%,证明了"分工合作"比单一模型更有效,为AI视觉系统提供了新思路。