新经济形势和互联网金融风生水起,让整个银行业面临着重大的产业转型难题:银行提供的服务和产品存在较大的同质性,想要具有竞争优势就必须实施差异化战略;长期封闭的系统让银行不能全面且及时地了解客户的真实需求,单向交流导致客户参与度低,没有获得真正的客户行为信息;社交媒体的兴起为银行创造了全新的客户接触渠道,同时也带来了如何深挖客户需求、快速响应和加速产品创新的挑战。
在这些挑战之下,银行需要考虑如何充分利用实体网点可以和客户可以面对面的优势,因为每天进出银行办理业务和咨询的各种人,他们内心所想和外在行为对于银行更好地开展业务来说可能是一个非常重要的信息。如果可以根据面部表情和细微的动作,提前对客户的心理和潜在需求进行预判,将有助于银行在与具体的客户打交道时做好准备,洞察消费者潜在需求和满意度,从而有的放矢的提供更好的服务,并改善银行金融产品,增加盈利的同时控制好风险。
当然,这种利用客户情绪感知来优化业务的方法也要求银行具备较高的数据驾驭能力,不仅要收集来自网点和信贷等传统渠道的结构化数据,还有收集来自物联网和互联网等各类来源的非结构化数据,甚至需要与历史数据对照;同时处理海量数据的复杂度高,难以沿用传统方法,要达到低成本、低能耗、高可靠性目标,通常需要冗余配置、分布化和云计算技术,这些都是银行所欠缺的。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。