第六届中国云计算大会上,ZDNet采访直播间分外热闹,产学研三路专家都曾做客其中分享云计算、大数据的故事。PMC公司研发副总裁兼首席科学家廖恒博士也是其中一员,他跟ZDNet的网友讲述的是PMC如何做“硬”以迎接大数据浪潮,应对软件冲击。
大数据时代造就市场更大的需求,这对于长期关注于数据存储的PMC来说绝对是个机遇。但是,廖恒博士表示目前市场上对于大数据还存在一定误解。数据的处理计算必须和存储相互依赖相互结合,而常常在谈论大数据的时候,却比较容易忽视存储,而将大数据片面的理解为Hadoop。
这在实际数据存储中却要依情况而看,廖恒举例目前90%以上的大数据分析所覆盖的大数据量其实并不是很大,可能还不到到100G的容量,大材小用时有发生。这就需要一种模式的创新,Hadoop更多的是面向于大集群、文件批处理的模式,而Spark可应对内存内的处理,所以要根据实际需要进行匹配,当然也更适用于TCO的优化。未来,数据中心或者是在小规模的机架内做到资源的共享、池化和调配,会带来一个最终的优化方案。
谈到软硬件关系,廖恒形象地比喻,在软硬件的体系结构的中间有条很大的鸿沟,软件人不能理解硬件实质,硬件人又很难理解软件的生态,但软硬件又是一种互相依赖的关系。应对于此,作为存储的硬件厂商,PMC今天提供的更多的是模块化的解决方法。不论芯片、板卡、子系统还是通过SATA、SAS、PCIe来连接,都能覆盖市场中的所有形态,但这种搭积木的模式也不是完善的,灵活性就是个大考验。
PMC也在寻求改善,体系结构上亟需创新,去年提出的I/O分离解耦合的体系架构就是解决方案。当然,这个方案不是一蹴而就的,包括基础技术开发、原型机开发、和数据中心的测试、交流,目前都处于不断探索和创新中。
对于敏感的闪存成本问题,廖恒谈到,站在产业规模的考虑,PMC专注于产品的研发和市场开拓,认为解决此问题最终无非是要做到标准化和开放化。在此,PMC也一直推动NVMe标准的制定,整个生态体系的开放互通。同时,廖博士风趣地说道,PMC也在不断练好“内功”,以望稳定地站在市场洪流中。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。