第六届中国云计算大会上,ZDNet采访直播间分外热闹,产学研三路专家都曾做客其中分享云计算、大数据的故事。PMC公司研发副总裁兼首席科学家廖恒博士也是其中一员,他跟ZDNet的网友讲述的是PMC如何做“硬”以迎接大数据浪潮,应对软件冲击。
大数据时代造就市场更大的需求,这对于长期关注于数据存储的PMC来说绝对是个机遇。但是,廖恒博士表示目前市场上对于大数据还存在一定误解。数据的处理计算必须和存储相互依赖相互结合,而常常在谈论大数据的时候,却比较容易忽视存储,而将大数据片面的理解为Hadoop。
这在实际数据存储中却要依情况而看,廖恒举例目前90%以上的大数据分析所覆盖的大数据量其实并不是很大,可能还不到到100G的容量,大材小用时有发生。这就需要一种模式的创新,Hadoop更多的是面向于大集群、文件批处理的模式,而Spark可应对内存内的处理,所以要根据实际需要进行匹配,当然也更适用于TCO的优化。未来,数据中心或者是在小规模的机架内做到资源的共享、池化和调配,会带来一个最终的优化方案。
谈到软硬件关系,廖恒形象地比喻,在软硬件的体系结构的中间有条很大的鸿沟,软件人不能理解硬件实质,硬件人又很难理解软件的生态,但软硬件又是一种互相依赖的关系。应对于此,作为存储的硬件厂商,PMC今天提供的更多的是模块化的解决方法。不论芯片、板卡、子系统还是通过SATA、SAS、PCIe来连接,都能覆盖市场中的所有形态,但这种搭积木的模式也不是完善的,灵活性就是个大考验。
PMC也在寻求改善,体系结构上亟需创新,去年提出的I/O分离解耦合的体系架构就是解决方案。当然,这个方案不是一蹴而就的,包括基础技术开发、原型机开发、和数据中心的测试、交流,目前都处于不断探索和创新中。
对于敏感的闪存成本问题,廖恒谈到,站在产业规模的考虑,PMC专注于产品的研发和市场开拓,认为解决此问题最终无非是要做到标准化和开放化。在此,PMC也一直推动NVMe标准的制定,整个生态体系的开放互通。同时,廖博士风趣地说道,PMC也在不断练好“内功”,以望稳定地站在市场洪流中。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。