如题,但希望网友不要误解,这里的需要是指大数据技术在目前的发展进程中,是不会阻碍到O2O的应用,而对于O2O来说,最难的莫过于数据的来源。这想必也是众多掘金电商、O2O的厂商们的苦恼,更是未来抢占O2O市场先机的一个分水岭。
其实电商领域的O2O并不是一个新鲜的词汇,早在团购网站兴起时就已经开始出现。百度百科对于O2O的定义为Online To Offline(在线离线/线上到线下),是指将线下的商务机会与互联网结合,让互联网成为线下交易的前台,这个概念最早来源于美国。在最近公布的《流通蓝皮书:中国商业发展报告(2013~2014)》中指出,中国电子商务进入O2O时代。
以前,电子商务与实体经济的融合主要体现在产品融合方面,即在电子商务平台上交易的产品来源于实体,但在运营上二者相互独立。但是走进O2O时代,对于电子商务的运营似乎就有一些差别,实体与网络又多了一份联系,需要线上线下的高度结合。
新的方式,自然更需要新的模式。线上管理线下,无疑加大了存储量,不仅包括线上存储,实体店的每天客单价、进店人流量,来源渠道等等都需要记录存储。加以运用数据分析,用数据说话。
在O2O模式中,通过线上的“O” 积累口碑、提高品牌曝光并吸引精准客户群体的关注,最终为线下实体店导入客流;线下的“O”提供完善的售前售中和售后服务,大数据成为串联这两个“O”,实现O2O营销闭环的关键。
立足中国本土,不难发现,2013年O2O进入高速发展阶段,众多商家都齐齐涌入。微信推出“扫购”功能,用户可以线下扫码、线上购买。苏宁推出“附近苏宁”功能,用户可在线上查找门店,关注促销信息,线下体验和购买。而天猫则将广告和促销环节向线下渗透,线下宣传“双十一”活动、线上下单。
百分点科技公司一景
在记者最近采访的国内大数据服务商百分点科技公司,也看了O2O未来的发展潜力,毕竟在中国线下的零售占据总体的90%,而线上购买还不到10%。为此,百分点成立O2O子公司“信柏科技”,定位于O2O大数据,协助传统零售业的线下数据挖掘和分析。作为一家大数据初创公司,百分点一直专注于互联网企业的消费者偏好数据,并推出了大数据引擎。在电商、教育、旅游、媒体、金融、证券、制造业等多个领域都有涉及。
达到千家的合作伙伴,也就意味着千个商家的数据量,这也是促进百分点在大数据技术层面上的不断发展。百分点运营副总裁韩志勇告诉记者其后台的数据处理技术也是经历了四个阶段的,它所构建的大数据处理平台包含了数据存储和数据处理两个层次。
底层的基础架构自然少不了hadoop,但它也只是其中的一个组件,这包括分布式文件系统(HadoopHDFS)、分布式SQL数据库(MySQL)、分布式NoSQL数据库(Redis、MongoDB、HBase)、分布式消息队列(ApacheKafka)、分布式搜索引擎(ApacheSolr)以及必不可少的ApacheZookeeper。
其中,流式实时计算帮助客户获得肉眼无感知的性能。如此架构的数据处理,相信可以适用不论是B2B、B2C还是O2O等等各种电商模式,所以O2O所需求的大数据处理技术并非需要重新架构,它所面对的技术性挑战也并非是其发展的最大阻滞。
百分点科技公司董事长苏萌表示,O2O面临的最大挑战应该是数据的收集,因为目前线下搜集的数据可用性并不高。而百分点所做的是对中国消费者用户的习惯的研究,包括用户的购买时间、购买习惯和可接受的价格,基于这样的先天优势,可在一定程度上帮助到线下零售。
但这还是远远不够的,线下零售还需要寻求一种方式,这在中国可能还是起步阶段。而在美国,很早就已经注意到对于实体销售的数据收集工作。当你去逛沃尔玛,它所给你配备的购物车就会跟踪你的行为轨迹并记录,沿着人们行走的轨迹,不仅可以知道用户的购物习惯,也在一定程度上方面超市的货架、物品摆放的布局。当然现在随着WIFI的普及似乎也可以轻松做到,当你超市内部网络时,你消费者行为轨迹也就这样轻松获取了。
在中国O2O前景的规划设想中,苏萌举例,未来的购物中心,单单凭借线下销售已经不能满足消费者,但是人们的需求又不能只是在网上满足,这就需要一个结合点。基于以前所收集的数据模型、算法,以及移动端的引导,吸引了前来购物中心的人流,再运用数据分析将他们精准的分流和引导。
据悉阿里巴巴在今年所投入的O2O的领域中,也是相同的想法。这是信柏科技对于O2O市场的构想蓝图,但具体的实施策略,苏萌并未透漏。以一见百,看中O2O大数据市场的当然不止百分点,这也是更多觊觎这块大蛋糕的厂商们在寻求的突破口。
好文章,需要你的鼓励
YouTube开始推出肖像检测工具,帮助创作者识别和举报使用其面部特征的AI生成视频。该系统类似于版权检测机制,目前处于测试阶段,仅向部分创作者开放。用户需要提供政府身份证件照片和面部视频来验证身份。系统会标记疑似包含用户肖像的视频,但无法保证100%准确识别AI内容。YouTube将根据多项因素决定是否移除举报的视频。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。
谷歌宣布在AI Studio平台中引入"氛围编程"体验,让编程和非编程用户都能更轻松地开发应用程序。用户可通过简单提示生成可运行的应用,新功能包括应用画廊、模型选择器、安全变量存储等。平台还添加了模块化"超能力"功能和"手气不错"按钮来激发创意。完成的原型应用可一键部署到谷歌云运行平台。此次更新正值业界期待谷歌即将发布Gemini 3.0大语言模型。
中国人民大学研究团队开发了Tool-Light框架,通过信息熵理论解决AI工具使用中的过度调用、调用不足和过度思考问题。该框架采用熵引导采样和两阶段自演化训练,让AI学会合理使用外部工具。在10个推理任务测试中,Tool-Light显著提升了AI的效率和准确性,为AI工具集成推理提供了新的解决方案。