Seagate 正在通过推出采用 HAMR 技术的 36TB Exos M 硬盘样品,扩大其相对于东芝和西部数据的容量领先优势,这也是目前业界容量最大的硬盘。
上个月,该公司宣布已获得一家顶级云服务提供商 (CSP) 的认证许可,可以开始量产和出货采用 HAMR 技术的 32TB Exos M 叠瓦式磁记录 (SMR) 硬盘,现在又将 HAMR 容量提升了 4TB。HAMR Mozaic 3+ 技术通过激光瞬间加热磁盘记录介质涂层上的比特区域,使其磁极性可以被驱动器的写入磁头设定,当冷却至室温后,比特设置将保持稳定。
CEO Dave Mosley 表示:"我们正处于数据存储和管理方式发生重大转变的时期。由于云计算的持续扩张和早期 AI 的采用,前所未有的数据创建量要求长期的数据保留和访问,以确保可信的数据驱动成果...Seagate 继续在面密度方面保持领先,目前在 Exos M 平台上推出容量高达 36TB 的硬盘样品。此外,我们正在执行创新路线图,现已在测试环境中成功展示了单盘超过 6TB 的容量。"
Dell 的产品管理高级副总裁 Travis Vigil 补充道:"搭载 Seagate HAMR 驱动的 Mozaic 3+ 技术的 Dell PowerScale 在支持检索增强生成 (RAG)、推理和代理工作流等 AI 应用场景中发挥着关键作用。Dell Technologies 和 Seagate 正共同制定行业领先的 AI 存储创新标准。"
竞争对手东芝和西部数据使用微波辅助磁记录 (MAMR) 的变体技术来存储数据,但其记录介质无法支持像 HAMR 那样小的比特区域。这意味着他们的磁盘盘片面密度低于 Seagate 的 HAMR 硬盘,后者采用十盘设计,单盘容量现已达到 3.6TB。相比之下,西部数据最高容量为 32TB,采用十一盘设计,单盘面密度为 2.91TB,比 Seagate 低 19%。
东芝的 MA11 系列 SMR 最大容量为 28TB,采用十盘设计,单盘容量为 2.8TB,面密度低于西部数据,比 Seagate 低 22.2%。
西部数据和东芝都表示将转向 HAMR 技术。2022 年,东芝表示其路线图中包括在 2026 财年或更晚推出 40TB+ 的 HAMR 硬盘。Seagate 计划在今年下半年推出第二代 40TB HAMR 硬盘。考虑到东芝客户需要对其 HAMR 硬盘进行认证,而 Seagate 发现要实现可接受的生产良率和可靠性是一个多年的过程,东芝可能要到 2027 年才能开始大规模供货 HAMR 硬盘,比 Seagate 晚两年。
西部数据也有引入 HAMR 技术的计划。根据 CFO Wissam Jabre 在 2023 年 6 月的说法,需要 12 到 18 个月的时间。现在已经过去了 18 个月,但 WD 的 HAMR 技术尚未面世。巧合的是,Jabre 刚刚辞职。
与东芝一样,西部数据会发现 HAMR 硬盘需要较长的制造开发时间,同时也需要客户认证,特别是对可靠性要求较高的云服务提供商和超大规模数据中心运营商,他们将是这些 7200 转近线硬盘的最大客户。当西部数据转向 HAMR 时,可能会比 Seagate 落后 12 个月或更长时间。
Exos M 36TB 硬盘采用 6Gbps SATA 接口。Seagate 尚未公布其持续传输率、缓存大小、MTBF 等详细参数。我们预计这些信息将在几周内公布,并且与其现有的 Exos MA11 32TB 硬盘相近,这将使 Seagate 在容量方面保持至少 12 个月的优势。
好文章,需要你的鼓励
VSCO今日更新VSCO Capture应用,新增视频拍摄功能。用户现可在拍摄照片和视频时应用并调整VSCO的50多种滤镜预设,包括经典胶片到现代创作风格。新版本还推出胶片颗粒滤镜,可动态控制纹理强度、大小和色彩。用户能将颗粒滤镜叠加到Film X滤镜上,结合柯达、富士和爱克发胶片风格,保存个性化胶片配方。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
Instagram负责人Adam Mosseri表示,AI生成内容已经占据社交媒体主导地位,预计将超越非AI内容。他认为识别AI内容的技术效果不佳,建议转而为真实媒体建立指纹识别系统,由相机制造商在拍摄时进行加密签名。Mosseri还指出,创作者应优先发布"不完美"的原始图像来证明真实性,因为精美方形图片的时代已经结束。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。