在6月21日举办的华为开发者大会(HDC 2024)上,华为云CTO张宇昕介绍了下一代云基础设施——CloudMatrix。这一创新性的技术解决方案旨在解决当前云平台在大模型训练和使用中遇到的“算力墙”“内存墙”和“能效墙”等问题。
张宇昕表示,CloudMatrix改变了传统数据中心的架构和算力供给模式,将传统的以CPU为中心的主从架构,演进为多元算力对等全互联架构;并通过高速互联网络协议,将CPU、NPU、GPU 等算力资源全部互联和池化,从而把AI算力从单体算力演进到矩阵算力,开启智能算力新纪元。
目前华为云是业界唯一采用对等架构超节点技术提供算力服务的厂商,实现了业界领先的性能和可靠性。据悉,华为云超节点在算力方面相比业界单节点提升了50倍,大模型的checkpoint恢复时长低于10分钟,万卡集群线性度大于95%,远超业界水平。
值得一提的是,基于盘古大模型5.0的实测数据显示,在同等算力条件下,CloudMatrix相较于传统服务器集群架构,在模型训练效率上提升了68%。这一显著的提升,充分证明了CloudMatrix在云原生基础设施方面的技术领先性。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。