Databricks Inc. 已完成上个月宣布的巨额 100 亿美元融资轮。
该公司今天同时披露完成了 52.5 亿美元的新债务融资。摩根大通领投了这轮债务融资,巴克莱银行、花旗银行和其他金融机构参与其中。
Databricks 融资的消息最早在 11 月传出。当时预计公司将筹集"至少"50 亿美元。路透社在 12 月中旬报道称这个数字可能超过 95 亿美元,几天后,Databricks 确认正在进行 100 亿美元的 J 轮融资。
领投方 Thrive Capital 与超过半打其他机构投资者一起参与了这轮融资。Databricks 今天透露,卡塔尔投资局、淡马锡、麦格理资本和 Meta Platforms Inc. 也参与其中。Databricks 联合创始人兼首席执行官 Ali Ghodsi 告诉路透社,来自 Meta 的投资将加深两家公司在人工智能领域的合作,特别是在 Facebook 母公司的 Llama 系列大语言模型方面。
Databricks 提供一个广受欢迎的基于云的数据存储和分析平台。它采用数据湖仓架构,可以存储结构化、非结构化和半结构化数据。企业可以对存储在 Databricks 中的信息运行 SQL 查询,使用 AI 模型发现有用模式并执行其他分析任务。
该平台支持名为 ACID 的数据可靠性标准。它可以回滚未成功完成的数据修改,这意味着这些修改常常产生的错误信息会被删除。此外,ACID 可以防止同时进行的数据修改相互干扰。
2023 年,Databricks 以 13 亿美元收购了一家名为 MosaicML Inc. 的风投支持的 AI 初创公司。此后,该公司扩展了大量 AI 功能。Ghodsi 今天告诉路透社,数千名客户正在公司平台上运行 Llama 模型。
Databricks 提供的功能使企业能够使用存储在其平台中的数据对 AI 模型进行微调或定制。它还使用名为 DSPy 的开源工具来自动化提示词调优。这是一种机器学习技术,通过为 AI 模型提供如何处理用户提示的指令来提升其输出质量。
该公司已将 Meta 的一个 Llama 模型直接集成到其平台中。公司提供由 Llama 3.1 70B 驱动的预打包 SQL 函数或程序。客户可以使用这些功能来总结存储在 Databricks 中的信息、翻译信息并执行其他任务,而无需手动部署大语言模型。
Ghodsi 表示:"组织正在现代化其数据和 AI 基础设施,因为他们认识到生成式 AI 的巨大潜力。数据智能对于释放这种潜力和帮助企业实现业务目标至关重要。"
该公司将利用 100 亿美元融资轮的收益开发新的 AI 产品。此外,Databricks 计划进行收购并扩大其国际市场营销业务。部分资金将用于为现任和前任员工提供流动性。
新的融资使 Databricks 上市的紧迫性降低。在 11 月融资消息传出前不久,Ghodsi 表示公司最早将在 2025 年下半年上市。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。