随着 AI 和大数据的兴起,"数据湖"和"数据中心"这两个术语经常在相关讨论中交替出现 - 但它们其实代表着完全不同的概念。数据中心可以托管数据湖,但除此之外,两者几乎没有其他共同点。
那为什么会产生混淆呢?这是因为它们都在海量信息的管理和存储方面发挥作用。随着组织扩展其 AI 和分析能力,它们背后的基础设施和数据管理策略变得越来越紧密相连。
让我们深入了解什么是数据湖,它与数据中心有何不同,以及为什么这种区别很重要。
什么是数据湖?
数据湖是一个作为数据中央存储库的软件平台。通常,数据湖的目的是托管企业需要管理的各类数据。数据湖可以作为结构化数据 (如数据库) 和非结构化数据 (如视频或电子邮件) 的存储场所。
数据湖大约在十年前开始流行。当时,大多数需要大规模管理或处理数据的企业都依赖于所谓的数据仓库,而数据仓库的灵活性较差,因为它们通常只能支持结构化数据。通过提供一个可以存储几乎任何类型数据的集中位置,数据湖促进了多样化的数据管理和分析用例。
数据湖多年来不断发展,一些数据湖平台添加了旨在增强数据治理和安全性或简化数据处理的功能。但是,数据湖的核心目的 - 集中存储各种类型的数据 - 始终保持不变。
数据湖与数据中心有何不同?
数据湖和数据中心的区别在于,数据湖是基于软件的信息存储库,而数据中心是存放 IT 设备的物理设施。它们是本质上不同的实体,解决着完全不同的需求。
具体来说,数据湖和数据中心的主要区别包括:
- 数据湖是软件平台,而数据中心是物理场所。 - 数据湖只能存储数据。数据中心可以在存储信息所需的物理基础设施方面托管数据,但数据中心的主要目的是容纳服务器。 - 数据中心包括 HVAC 和电力基础设施等物理系统,以保持 IT 设备运行。数据湖不包括这些组件,因为它们是软件平台,而不是物理设施。
共同点:数据湖与数据中心的交集
如果人们有时会对数据湖和数据中心的区别感到困惑,可能是因为数据中心可以托管用于构建数据湖的底层物理基础设施。
要创建数据湖,您至少需要一台服务器 (通常会使用更多),以及可以存储您想在数据湖中保存的信息的存储介质 (如磁盘)。
由于数据中心的目的是为部署 IT 基础设施提供空间,因此您可以在数据中心内设置数据湖的组件。
阅读最新的数据存储新闻
但在这方面,数据湖与任何其他类型的 IT 工作负载 - 如常规应用程序或文件系统 - 没有什么不同,它们也可以驻留在数据中心托管的基础设施上。数据湖和数据中心之间并没有特殊关系。
还要注意的是,大多数数据湖平台将数据环境从托管它的底层物理基础设施中抽象出来。这意味着在数据湖中管理数据的人通常不知道哪些物理服务器在支持他们的工作负载,或者托管他们数据的磁盘在哪里。从这个意义上说,恰好托管特定数据湖的数据中心与数据湖本身的功能无关。
明确数据湖与数据中心的区别
最终,大多数数据湖都依赖于数据中心 - 除了那些托管在传统数据中心环境之外的本地服务器上的数据湖。尽管如此,数据湖和数据中心服务于不同的目的,理解其中一个并不需要对另一个有专业知识。
好文章,需要你的鼓励
SambaNova Systems 推出新的 AI 深度研究框架,可生成深度报告的速度提高 3 倍,成本大幅降低。该框架与 CrewAI 合作开发,支持企业分析私密数据,使用开源大语言模型和 SambaNova 的 AI 加速器,无需依赖 Nvidia GPU。新框架包含智能路由系统,可根据需求选择最合适的智能体,提供从基础搜索到深度财务分析的全方位研究能力。
生成式 AI 模型需要大量真实数据训练,但互联网上的内容仍不足以应对所有情况。为继续发展,这些模型需要使用模拟或合成数据进行训练。专家指出,AI 开发者必须负责任地使用合成数据,否则可能会迅速出现问题。合成数据可以教导模型应对现有数据中不存在的场景,但关键是要确保这些数据可靠且符合现实。
最近,中国人工智能公司Monica推出的Manus引发了广泛关注。然而,与DeepSeek等有实质性突破的中国AI不同,Manus并无革命性创新。它宣称具有自主性,实际上只是执行预设流程的大语言模型。Manus的唯一新颖之处在于它来自中国,但这并不足以证明它的先进性。AI的成功取决于应用,而非产地。
Oracle 宣布客户承诺未来云服务消费将达 480 亿美元,接近其 2024 财年年收入。尽管第三季度收入增长 6%,净收入增长 22%,但由于未达华尔街预期,投资者反应平淡。公司在人工智能基础设施方面持续投资,包括参与 Stargate 项目和建设大规模 GPU 集群,展现出对未来增长的信心。