随着 AI 和大数据的兴起,"数据湖"和"数据中心"这两个术语经常在相关讨论中交替出现 - 但它们其实代表着完全不同的概念。数据中心可以托管数据湖,但除此之外,两者几乎没有其他共同点。
那为什么会产生混淆呢?这是因为它们都在海量信息的管理和存储方面发挥作用。随着组织扩展其 AI 和分析能力,它们背后的基础设施和数据管理策略变得越来越紧密相连。
让我们深入了解什么是数据湖,它与数据中心有何不同,以及为什么这种区别很重要。
什么是数据湖?
数据湖是一个作为数据中央存储库的软件平台。通常,数据湖的目的是托管企业需要管理的各类数据。数据湖可以作为结构化数据 (如数据库) 和非结构化数据 (如视频或电子邮件) 的存储场所。
数据湖大约在十年前开始流行。当时,大多数需要大规模管理或处理数据的企业都依赖于所谓的数据仓库,而数据仓库的灵活性较差,因为它们通常只能支持结构化数据。通过提供一个可以存储几乎任何类型数据的集中位置,数据湖促进了多样化的数据管理和分析用例。
数据湖多年来不断发展,一些数据湖平台添加了旨在增强数据治理和安全性或简化数据处理的功能。但是,数据湖的核心目的 - 集中存储各种类型的数据 - 始终保持不变。
数据湖与数据中心有何不同?
数据湖和数据中心的区别在于,数据湖是基于软件的信息存储库,而数据中心是存放 IT 设备的物理设施。它们是本质上不同的实体,解决着完全不同的需求。
具体来说,数据湖和数据中心的主要区别包括:
- 数据湖是软件平台,而数据中心是物理场所。 - 数据湖只能存储数据。数据中心可以在存储信息所需的物理基础设施方面托管数据,但数据中心的主要目的是容纳服务器。 - 数据中心包括 HVAC 和电力基础设施等物理系统,以保持 IT 设备运行。数据湖不包括这些组件,因为它们是软件平台,而不是物理设施。
共同点:数据湖与数据中心的交集
如果人们有时会对数据湖和数据中心的区别感到困惑,可能是因为数据中心可以托管用于构建数据湖的底层物理基础设施。
要创建数据湖,您至少需要一台服务器 (通常会使用更多),以及可以存储您想在数据湖中保存的信息的存储介质 (如磁盘)。
由于数据中心的目的是为部署 IT 基础设施提供空间,因此您可以在数据中心内设置数据湖的组件。
阅读最新的数据存储新闻
但在这方面,数据湖与任何其他类型的 IT 工作负载 - 如常规应用程序或文件系统 - 没有什么不同,它们也可以驻留在数据中心托管的基础设施上。数据湖和数据中心之间并没有特殊关系。
还要注意的是,大多数数据湖平台将数据环境从托管它的底层物理基础设施中抽象出来。这意味着在数据湖中管理数据的人通常不知道哪些物理服务器在支持他们的工作负载,或者托管他们数据的磁盘在哪里。从这个意义上说,恰好托管特定数据湖的数据中心与数据湖本身的功能无关。
明确数据湖与数据中心的区别
最终,大多数数据湖都依赖于数据中心 - 除了那些托管在传统数据中心环境之外的本地服务器上的数据湖。尽管如此,数据湖和数据中心服务于不同的目的,理解其中一个并不需要对另一个有专业知识。
好文章,需要你的鼓励
Ubuntu 25.10和Fedora 43的下一个版本将在GNOME变体中仅支持Wayland,这是因为GNOME 49将移除X11会话。此变化只影响GNOME版本,两个发行版仍提供其他桌面环境选项。GNOME项目还计划引入对systemd的更强依赖,这将使GNOME在非Linux系统上运行变得更困难。尽管存在用户阻力,但Red Hat作为主要赞助商推动了这一转变。
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
金融科技公司Chime在纳斯达克首日交易表现强劲,股价上涨超过37%。公司IPO定价每股27美元,筹资约7亿美元,收盘价达37.11美元。Chime第一季度营收5.187亿美元,同比增长32%,净利润1270万美元,是少数盈利上市的科技公司。截至3月底,公司拥有860万活跃用户,同比增长23%。作为数字银行服务商,Chime主要服务年收入10万美元以下客户群体,提供免费支票账户等服务。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。