数据存储巨头NetApp今天宣布推出一项新服务NetApp Astra,全面实现Kubernetes应用的可移植性愿景。
NetApp Astra是一项全面管理的、应用可感知的数据管理服务,针对基于Kubernetes的应用,旨在帮助企业保护、恢复和移动在部署在Kubernetes上的应用,无需下载、安装、管理或升级任何软件。
Kubernetes是一种开源工具,用于协调大型软件容器集群,这些集群托管了可以运行在任何计算基础设施上的现代应用组件。过去几年中,这项技术迅速普及,但是也给企业带来了很多问题,因为有分析师认为,容器化应用需要最佳性能才能发挥持久存储的作用。
Moor Insights&Strategy分析师Steve McDowell认为,问题在于软件容器与传统企业存储搭配不佳。他解释说,容器工作负载的短暂性,要求存储管理操作难度增加了一个数量级,超出了裸机和虚拟化环境的能力范围。
此外,容器应用还需要在此之上的抽象层来存储数据。McDowell说,缺乏这些存储功能会导致一些非常尴尬的IT管理问题。
“容器也会生成数据,需要存储和管理,从容器映像到Kubernetes状态信息再到配置数据,这是数据的爆炸式增长。”
NetApp试图通过NetApp Astra管理这些爆炸式增长的数据。NetApp Astra是去年公布的Project Astra计划的成果,该计划首次为Kubernetes工作负载带来了新的数据管理功能,具有使用常规快照保护数据的功能。因此,如果数据被意外删除或损坏,用户可以将Kubernetes集群还原到之前快照的状态。
NetApp Astra还通过远程备份实现灾难恢复。因此,团队可以对应用及其当前状态进行完整备份,并使用此备份将应用及其数据还原到位于单独区域中的另一个Kubernetes集群中,以满足数据恢复的需求。
最后NetApp说,这项新服务通过“主动克隆”简化了应用的可移植性和迁移,这意味着整个应用及其数据都可以从一个Kubernetes集群移动到另一个集群,不管位于何处。
McDowell说,NetApp是最早发现云原生数据管理问题的存储厂商之一,并且已经尝试解决了很长时间,这从最近的一些收购(例如Talon Storage Solutions和Spot)中可以明显看出。尽管NetApp在开拓市场方面有一些错误的开端,但他说,这些尝试让NetApp清楚地知道了哪些是奏效的,哪些是不成功的。
McDowell说:“NetApp在将Astra推向市场方面采取了一种非常有针对性的、经过客户验证的方法。Astra提供了IT部门部署容器工作负载所需的功能,它提供了一种集成的管理体验,使存储和Kubernetes可以相互感知。我认为,部署Astra的NetApp客户会很满意。”
NetApp公有云服务产品管理副总裁Eric Han回应了McDowell的这些观点称,备份、克隆、灾难恢复、数据生命周期操作、数据优化、合规性和安全性对于运行Kubernetes应用的企业来说,都是至关重要的功能。
“这些挑战加在一起增加了复杂性。这与Kubernetes让应用开发和部署更简单、更快、更灵活的目标是相互矛盾的,而后者正是NetApp Astra有望实现的愿景。”
McDowell表示,NetApp Astra的发布让NetApp与竞争对手Pure Storage一起成为了云原生存储市场的领导者,后者通过去年收购的Portworx达到了这一目标。但是他说,两家厂商都需要充分利用这一领先优势,因为其他厂商很可能会在未来几个月内推出他们的解决方案。
McDowell说:“这个市场中的每个人都必须有解决容器数据管理问题的方法,这将成为一个重要赌注。我预计随着市场争相满足这一需求,今年将是竞争相当激烈的一年。”
Constellation Research分析师Holger Mueller表示,他也希望有更多解决方案来解决这个问题。“可移植性的关键在于数据,而数据却无法被轻松、快速、频繁地移动。这标志着生态系统的迅速成熟,像NetApp这样以前是存储厂商的公司,正在致力于解决Kubernetes工作负载的数据可移植性问题。”
NetApp表示,NetApp Astra现在已经在Google Cloud上可用,而且很快会在AWS、微软Azure和本地环境中得到支持。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。