WEKA 宣布使用 HPE PCIe Gen 5 硬件在 SPECstorage Solution 2020 基准测试的全部五个测试场景中均获得最佳成绩。
该基准测试包含五个工作负载场景:AI 图像处理 (代表 AI TensorFlow 图像处理环境)、电子设计自动化 (EDA)、基因组学、软件构建和视频数据采集 (VDA)。测试结果包括作业数或构建数、整体响应时间 (ORT) 以及供应商在结果网页上提交的其他详细指标。WEKA 在 2022 年 1 月使用 Samsung SSD 提供的本地部署解决方案就已经获得了大部分最佳成绩。随后在 2024 年 3 月,它再次在五个类别中的四个中击败其他供应商。现在,WEKA 已经在所有工作负载测试中都位居榜首。
WEKA 性能工程和技术营销总监 Boni Bruno 在博客中写道:"WEKA 基于搭载 Intel Xeon 处理器的 HPE Alletra Storage Server 4110,于 2025 年 1 月 28 日创下新纪录,在所有五个 SPECstorage Solution 2020 基准测试工作负载中均排名第一... 我们的综合解决方案不仅通过在所有工作负载中创造作业和数据流的新纪录提高了标准,还实现了显著更低的延迟 - 在某些情况下比之前的记录低了高达 6.5 倍。"
这些结果优于 WEKA 在 2024 年 3 月使用公共云实例时的表现。两个表格展示了供应商提交的 AI 图像和 EDA 工作负载的结果:
在最新的测试结果中,WEKA 的 AI 图像性能略微提高了一倍多,且延迟更低,同时将 EDA 混合作业集数量提高了 2.7 倍,延迟也更低。
图表展示了作业输出计数与 ORT (延迟) 的关系,显示了 WEKA 与其他供应商之间的差距:
我们认为 WEKA 基准测试速度的这种激增,主要归功于 Alletra 4110 存储服务器中使用的 PCIe Gen 5 总线的加速效果,它连接 NVMe SSD 和系统内存,而不是因为自去年 3 月以来 WEKA 软件有了巨大改进。
Bruno 表示:"这些记录是使用单一的一致配置在五个 SPECstorage 基准测试中实现的,无需针对特定工作负载进行调优... 这些改进意味着更快的 AI 训练、更少的半导体仿真延迟、更快的基因组分析和更快响应的视频分析。"
他的博客详细介绍了 Alletra 4110 的硬件配置,并提供了各个基准测试运行的更多细节。
就 AI 训练和推理而言,这个基准测试的竞争程度不如 MLPerf 基准测试激烈,在 MLPerf 中,DDN 和 Hammerspace 等公司在保持多个 GPU 90% 或更高利用率方面的表现优于 WEKA。
WEKA 在 SPECstorage Solution 基准测试中的优势在于它实现了对所有工作负载的全面领先。现在我们要等待和关注其他供应商,如 Qumulo 和 NetApp,使用 PCIe Gen 5 硬件测试他们的软件的表现。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。