今天,华为常务董事、华为云CEO张平安在华为开发者大会2024(HDC 2024)主题演讲上重磅发布盘古大模型5.0,并分享了盘古大模型在钢铁领域“解难题、做难事”的具体实践。
宝武钢铁集团热轧生产线里,在一块厚260mm的钢坯被轧制成1.2毫米厚的钢板前,需要经过20道工序,涉及300多个参数。且每次调整生产钢板的种类和尺寸时,都需要工程师重新调整,一次需要耗费约5天的时间。
盘古大模型创新地将时序数据、表格数据、工艺参数、行业机理等token化,通过大模型的学习,实现对最优的参数进行预测,显著降低了热轧生产线调优时间,并提高预测精度和钢板成材率。
盘古大模型上线宝武钢铁集团1880热轧生产线
目前盘古大模型目前已经在宝武钢铁集团1880热轧生产线上线,预测精度提高5%以上,钢板成材率提升0.5%,预计每年可以多产钢板2万余吨,年收益达9000余万元。
此外,华为云还与宝武钢铁集团在炼钢、表检、新钢种研发、排程优化等多个领域开展盘古大模型的应用研究。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。