韩国科技公司Panmnesia在2023年的Flash Memory Summit上展示了其集中式CXL内存系统。在一次现场演示中,该系统在运行Meta推荐应用程序时展示了比基于RDMA的系统快三倍以上的性能指标。
这项CXL技术是与位于大田的韩国科学技术研究院(KAIST)合作开发的。Panmnesia已经打造了一个包括CXL CPU、交换机和内存扩展器模块的全面CXL框架。该框架拥有基于DIMM的6TB容量的CXL内存。该公司的策略是将其CXL硬件和软件知识产权产品推向CXL系统开发商和制造商。
Panmnesia的首席执行官Myoungsoo Jung博士表示:“我们很高兴能在今年的Flash Memory Summit上介绍我们创新的多TB全系统CXL框架。通过我们的CXL IP,我们致力于开拓尖端解决方案,相信这将显著提升数据中心的内存和存储能力。”
这个演示系统的容量比同样在FMS 2023展示的基于2TB三星/MemVerge的池式内存系统大三倍。
Panmnesia硬件
Panmnesia框架系统机箱有两个CXL CPU模块(如上图所示)、三个颜色较浅的CXL交换机模块和六个1TB内存模块或CXL端点控制器,形成一个统一的DIMM池。
在软件方面,该系统运行在Linux上,由CXL硬件设备驱动程序、虚拟机子系统和CXL优化的用户应用程序组成。有趣的是,虚拟机软件组件在内存空间中创建了一个无CPU的NUMA节点。
Panmnesia软件
一个视频幻灯片展示了这个CXL框架系统在类似Meta推荐应用程序的电影推荐应用中的性能。 这再次与没有添加外部内存的服务器和基于RDMA的替代方案进行了比较。
Panmnesia 与RDMA的比较
视频从加载用户和项目数据(在张量初始化期间)开始,随后使用机器学习模型进行电影推荐。Panmnesia系统完成任务的速度 是RDMA系统的3.32倍。
Panmnesia系统的另一个好处是它的模块化;内存模块中的DIMM可以被替换,可以使用更大容量的DIMM来扩展内存容量,而不需要增加额外的内存模块。
好文章,需要你的鼓励
OpenAI明确表示要成为互联网一切事物的主导界面。AI智能体正在改变用户的数字习惯,从健康记录分析到购物指导,ChatGPT已经在多个领域扩展影响力。用户快速采用AI工具,但企业和生态系统的适应速度滞后。电商领域的权力分配尚不明确,用户偏好AI驱动的答案优先体验,品牌则推动生成式引擎优化。研究旨在了解用户与企业在AI变革中的适应差异。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。