大兆极存(Bigtera)今日发布了全新版本的超融合基础架构(Hyper Converged Infrastructure; HCI)产品VirtualStor® ConvergerOne 1.3。VirtualStor ConvergerOne是一个整合运算、存储与网络资源的超融合平台,可提供弹性、敏捷的交付服务,有效突破传统三层式体系结构的资源扩展难、运维管理复杂等限制。最新版VirtualStor ConvergerOne 1.3多项强大新功能为独立软件开发商(ISV)提供更加安全、高效,且简单易用的运行平台,协助打造一站式解决方案,一次满足预算、人力、效能三大需求。
ISV运用超融合基础架构来开发软件已成为市场主流趋势。VirtualStor ConvergerOne 1.3可协助ISV立即部署AI或其他应用程序,使其能更专注在平台与应用层面的发展,此外,在不影响系统运作前提下,能按需扩展计算与存储资源能力。大兆极存正积极寻找更多优秀且具未来发展性的ISV,目前已与多家合作伙伴洽谈共推一站式解决方案,包括和AI业界拥有高知名度软件公司打造AI-Stack一站式解决方案,能降低中小企业跨入AI的门坎。
VirtualStor ConvergerOne 1.3无论在数据保护、虚拟机管理等方面,皆提供良好的运作机制,甚至可为超融合架构外部的前端系统提供NAS或SAN服务,便于企业汰除老旧存储设备,确保所有前端应用皆享有更高的I/O存取效能;另外还能整合AI平台,满足数据分析、图像处理等热门需求。除了ISV,有虚拟化、VDI、大数据分析等作业需求的企业,都适合部署VirtualStor ConvergerOne 1.3,借此打造极简、安全、高效的数字化基础架构。
新版的VirtualStor ConvergerOne 1.3拥有六大创新亮点:
■ 优异的效能表现:经由大兆极存以最小集群运行9个虚拟机进行实测,显示VirtualStor ConvergerOne的随机读取效能可达23万IOPS、随机写入效能可达8万IOPS,表现极为突出。
■ 提供批次复制功能:短短2~3秒内即能复制10个或20个以上虚拟机,且批次产生IP地址与网络名称、以避免虚拟机彼此冲突,可满足VDI、研发测试等多人同时应用的情境,同时藉由Linked Clone技术节省95%以上的复制空间。
■ 可将存储资源池提供予外部使用:大兆极存活用软件定义存储(SDS)技术,使得VirtualStor ConvergerOne 1.3的存储资源池不仅能为超融合架构环境内部的虚拟机所用,也可进一步为外部的前端系统提供NAS或SAN服务,让企业可顺道替换老旧存储系统。
■ 完整的系统保护:可透过集群方式,保障实体机、虚拟机与虚拟化存储的高可用性。假设某节点出状况,系统会立即将其承载的服务进行迁移,由相关虚拟机重新转向新节点来继续运作;支持节点自我修复功能,当节点硬件修复后要重新加入集群时,系统会自动执行数据同步与负载平衡配置,完成后将它加入集群,用户可选择是否将虚拟机迁移回来。
■ 支持虚拟机快照:藉由快照功能,备份当下虚拟机运行状态、以及内存里的数据,让用户日后能完整回复当时状态。执行虚拟机快照时,会将原虚拟机数据转为Read Only状态、无法再写入,并以COW(Copy-on-Write)方式产生新的数据块,因此即使此数据区块遭人为破坏(例如被勒索病毒加密),用户亦可切换回上次快照数据,确保营运服务持续运行。
■ 简单易用:一般IT人员即可透过统一的Web UI接口执行系统管理与资源监控,完全不需要手动输入复杂命令或脚本;举凡新增与设定虚拟机或HA配置、共享文件夹、资源群组或存储池,乃至于利用图形接口监控集群、主机节点、存储池、虚拟机的资源管理与监控,都能轻松上手。
VirtualStor ConvergerOne 1.3主要特色如下:
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。