Pure Storage今天宣布推出基于QLC闪存(是一种尚未在数据中心广泛部署的固态内存)的FlashArray//C存储系统升级版。
该系统旨在取代传统的混合阵列——一种结合了闪存和磁盘存储的、被广泛使用的存储系统。Pure Storage认为,这种硬件可以帮助企业更有效地运行Tier 2工作负载,例如通常部署在混合阵列上的备份应用。
Tier 2工作负载是对企业运营至关重要的一系列服务,但无需运行在数据中心速度最快的硬件系统赶上,FlashArray//C正是专门为此类应用设计的。Pure Storage最初设计的FlashArray//C使用的就是QLC,但去年发布的时候是不可用的,当时Pure Storage承诺会在2020年增加对QLC的支持。
QLC闪存中的Quad-Level Cell的缩写。所有闪存芯片都是由硅单元构成的,这些单元以电荷的形式存储数据,对应1和0,一个单元中可以存储的数据量,取决于能够保存多少个所谓的电荷状态。QLC闪存的每个单元中可以保存16个电荷状态,是目前能够批量生产的容量最高的固态内存。
但QLC芯片也有某些缺点,使其速度要慢于数据中心中采用的其他主流闪存。不过,QLC的高容量使其更适合于各种存储密集型Tier 2工作负载,包括备份、商业智能和许多通用计算任务,这些都是Pure Storage有望通过此次升级FlashArray//C系统瞄准的使用场景。
Pure Storage表示,FlashArray//C是业界第一个可以完全满配QLC闪存的存储系统。客户可以选择两个QLC模块:一个24.7 TB的模块和一个密度更大的49 TB模块,Pure Storage称,这是目前市场上的最高容量。而且,FlashArray//C阵列可容纳多个模块。
Pure Storage表示,该系统可以降低运行Tier 2工作负载的成本,“淘汰”掉用于此类应用的传统混合闪存和磁盘阵列。企业之所以选择混合阵列,是因为磁盘比闪存更便宜,混合在一起的系统成本效益总体上要高于全闪存系统。
但是在适当的价格点上,全闪存系统具有性能更高的优势。Pure Storage表示,FlashArray//C打消了客户使用外部厂商混合阵列的需求,从而简化了数据中心的维护流程。现在,他们可以将Pure Storage硬件用于运行关键任务和Tier 2工作负载,这会将降低维护两组完全独立的存储基础设施的复杂性。
好文章,需要你的鼓励
代理型AI正在颠覆在线会议平台,从被动观察者转变为主动参与者。Zoom、Microsoft等公司纷纷推出AI助手,不仅提供语音转录,还能回答问题、安排后续会议。Otter AI更是推出了能通过语音命令参与对话的AI会议代理。这些创新将大大提升会议效率,为企业带来实际价值。未来,AI将从工具演变为真正的协作伙伴,深度理解业务场景将成为关键竞争力。
谷歌与计算机历史博物馆联合发布了AlexNet的源代码,这是一个在2012年彻底改变人工智能领域的卷积神经网络。AlexNet证明了"深度学习"能够实现传统人工智能技术无法达成的目标,标志着人工智能领域的重大突破。此举不仅为AI爱好者和研究人员提供了一个窥探计算机历史关键时刻的机会,也为未来的历史学家提供了理解这项改变世界技术的宝贵资料。
Midjourney 与纽约大学合作,发布了一项提升大语言模型创造性写作能力的研究。他们提出了两种新技术:多样化直接偏好优化(DDPO)和多样化比值偏好优化(DORPO),旨在扩大模型输出的多样性,同时保持连贯性和可读性。这项研究不仅展示了 Midjourney 在文本领域的野心,也为企业 AI 团队、产品开发者和内容创作者提供了改进 AI 生成文本的新方法。
英伟达推出了一款名为G-Assist的实验性AI助手,可在本地GPU上运行,无需云端支持。这款AI助手旨在帮助玩家优化PC性能并提升游戏体验。G-Assist能够回答基本问题、调整系统设置、超频GPU等。虽然目前功能有限且存在一些性能问题,但它代表了本地AI应用的一个重要尝试,展示了未来GPU同时运行游戏和AI模型的潜力。