纵观当下的科技领域,用风起云涌、如火如荼不足为过。新技术的日益出现和普及,使得我们的工作、生活有了翻天覆地的变化。在过去几年中,大数据是谈及最多的话题,而如今,人工智能、物联网、机器学习等热门技术逐渐充斥各种大中小型活动中,产生的数据更是呈现出暴增趋势。
无可否认,新技术与云计算的融合将以人们无法想象的方式影响着商业和工业运营。但有一件事是显而易见的,就是会有更多的数据产生,尤其是非结构化数据。根据IDC研究显示,非结构化数据(29.8%)的增长速度超过了结构化数据(19.6%)。因此,企业需要高性能的存储解决方案来应对强劲的存储需求。
强劲的市场需求也催生了存储供应商的转变。细数近两年的市场,非结构化数据持续增长,有关存储技术最新进展的报道一直甚嚣尘上,其中包括非易失性存储器。随着新型接口和更现代化软件的不断普及,各大供应商也在积极创新,力图减少因过去20年内CPU发展所导致的数据中心IT基础架构不平衡。
据悉,这些全新的接口可以实现应用程度的低延迟和高性能数据存取,尤其是对于SQL/NoSQL数据、高性能计算工作负载和大数据应用。而对于大型的非结构化数据使用闪存技术意味着需要更高的性能。而不会出现横向扩展解决方案带来的延迟。另外,闪存的密集存储意味着比磁盘或磁带小得多的空间,这反过来又转化为电力、机架和冷却方面的节省。虽然闪存的成本仍然高于磁盘,但各个供应商们也在努力将价格变得更低。
不过,将非易性存储器用于非结构化文件数据目前仍然存在重大挑战,因此,需要一种能力与高性能闪存存储配合使用的现代二级存储解决方案。
• 挑战一:文件服务和数据管理
闪存供应商还没有建立企业需要管理其数据的文件服务。包括数据管理服务,如数据保护和备份,数据移动及数据检索等。
这意味着高性能闪存存储需要一个互补的辅助存储解决方案,企业需要管理大量数据的文件服务,可以让企业能够轻松地保护和备份数PB的数据,并且将数据从其所在的位置移动到所需位置,快速搜索并加以利用。
• 挑战二:传统解决方案无法跟上闪存
使用闪存进行非结构化文件数据存储需要兼容的辅助存储解决方案,但遗憾的是,传统备份和归档解决方案无法跟上闪存存储的速度。
一个补充高性能存储的现代存储解决方案需要能够处理并行数据流以尽可能快地读取数据。
• 挑战三:更高的价格点
尽管目前供应商们正在努力将闪存价格变得更便宜,但高性能的价格却在陡增。有了大量的数据,很难证明高性能闪存的成本。
但企业通常只需要将其数据的一部分存储在高性能主存储器中。从经济上来讲,对于经常访问的数据进行分层是非常便捷的,而针对长期保留的数据容量则是以低成本层次进行优化的,而不是为高性能而优化。
当将闪存的性能优势纳入更大策略的优化环境中时,高性能加上巨大的容量在整个数据管理系统中既经济可行又有价值。
小结
在非结构化数据爆炸的时代,高性能和大容量是目前所需的两个元素。随着各大供应商在存储方案上的不断推进,市场也逐渐出现使用现代化容量来补充高性能闪存,使企业能够在在真正需要的地方利用高性能存储能力,同时为其提供必要的文件服务,以更有效的管理所有数据。
好文章,需要你的鼓励
人工智能领域正在通过改进模型工作方式来释放新功能。研究人员开发了一种名为"SVDquant"的4位量化系统,可以使扩散模型运行速度提高3倍,同时提升图像质量和兼容性。这种技术通过压缩参数和激活值来大幅降低内存和处理需求,为资源受限的系统带来新的可能性。
Meta公司开发了一种机器学习模型SEAMLESSM4T,能够实现36种语言之间的近即时语音翻译。该模型采用创新方法,利用互联网音频片段避免了繁琐的数据标注。这一突破性技术有望简化多语言交流,但仍需解决噪音环境、口音等挑战,并关注技术可能带来的偏见问题。
生物制药行业正积极拥抱人工智能技术,大型企业投入巨资,小型公司谨慎布局。行业面临人才、数据和工作流程等挑战,但预计到2025年将在AI就绪度方面取得实质性进展。AI有望加速药物研发,提高效率,最终造福患者,重塑医疗保健的未来。
随着 AI 需求激增,数据中心行业面临严峻挑战。能源消耗激增威胁可持续发展目标,新项目遭遇公众反对。电力供应和分配方式亟需改革,行业或将迎来动荡的 2025 年。