BMC Software 发布了针对其大型机服务的数据存储和 AI 生产力增强功能。
根据 BMC 的说法,2025 年 1 月对 BMC AMI 产品组合的更新在开启大型机可能性方面"开创了新局面",它为最近宣布的 Cloud Data Sets (CDS) 添加了更多实质性内容。
BMC 在 2023 年 4 月收购了 Model9,并将其软件重新品牌化为 AMI Cloud。获得专利的 Cloud Data Sets 能够在不修改现有流程的情况下,直接访问本地或超大规模云服务商的对象存储。
"目前,在磁带和虚拟磁带库 (VTL) 上进行大型机数据的二级备份存储和检索既昂贵又耗时," BMC AMI 解决方案的营销副总裁 Priya Doty 表示。"BMC AMI Cloud Data 中的 CDS 功能提供了向对象存储的无缝过渡,这简化了备份和恢复流程,与传统解决方案相比可以节省成本。"
此外,通过 CDS,BMC AMI FDR (快速转储还原) 的当前用户现在可以将他们的磁带备份重定向到对象存储,无需直接访问存储设备 (DASD)、VTL 暂存或任何代码更改。BMC 表示,这将带来更快的备份速度、改善灾难恢复能力,并能够消除物理磁带和 VTL 存储的成本和基础设施需求。
去年,供应商在 BMC AMI DevX Code Insights 中引入了由 BMC AMI Assistant 支持的新 COBOL 代码解释功能。在生成式 AI 的驱动下,代码解释通过提供代码业务逻辑部分的简短摘要和代码逻辑流程的详细信息,赋予开发人员更强大的能力。
在 1 月的更新中,BMC AMI Assistant 现在包括"业内最广泛的语言支持",包括对 PL/I、JCL 和汇编语言编写的代码解释。BMC 表示,这有助于开发人员以"无与伦比的效率"理解、审查、扩展和测试大型机代码。
Java 在大型机上的使用正在增加,对改善应用程序性能的需求也随之增长。作为更新的一部分,新的 BMC AMI Strobe for Java 通过用户友好的网络界面,在单一工具中实现了"全面的"应用程序性能管理和分析。BMC AMI Strobe for Java 使开发人员能够"轻松识别"过度资源需求的来源,并在软件交付生命周期的早期阶段进行性能测试。
此外,由 BMC AMI Assistant 驱动的新型混合 AI 功能将 AI/ML 与生成式 AI 在 BMC AMI Ops Insight 中结合,简化了根本原因分析,有助于减少平均检测时间 (MTTD) 和平均解决时间 (MTTR)。新的交互式仪表板还允许用户根据其可观察性需求创建和个性化重点视图。
BMC 声称:"通过让系统程序员对他们看到的信息有更大的控制权,这些定制化的见解能够实现更快速和更智能的决策。"
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。