6月18日,在腾讯云融合创新大会上,腾讯云宣布大数据TBDS平台全新升级,通过深度融合多架构技术,实现了在单一平台上的湖仓统一,能提供数据入湖、存储、分析、应用等全场景的数据服务能力。升级后的TBDS综合性能提升20%,存算可按需伸缩和智能调优,让大数据处理进一步降本增效。
腾讯云大数据总经理徐晓敏表示,腾讯积累了非常丰富的大数据实践,持续为客户打造更轻、更快、更易用、更安全的大数据产品,致力于让企业实现数据的存储、分析和应用的自由,让大数据的价值快速兑现。
全新升级的TBDS融合了两种产品形态。一方面兼容社区生态,针对存储、计算、调度、分析等环节提供“开箱即用”的组件和引擎,帮助用户轻松应对实时分析、交互分析、数仓构建以及海量点查等多种需求场景。
另一方面,TBDS基于Lakehouse架构打造了云原生数据湖仓。借助统一元数据服务能力,异构存储集群间的数据可以互访,实现“一份数据、多种计算”,省去了传统大数据平台因为计算场景不一带来的数据来回搬迁。
得益于无服务的产品形态,TBDS数据湖仓变得“更轻”,用户可以一次部署、随开随用。过去需要多名专业人员协同完成的大数据任务,在TDBS上仅需少量人力即可独立操作。同时,极简化的操作体验也使得数据分析人员不再需要繁琐的配置工作,可以聚焦业务场景和目标实现,显著降低企业内部开展大数据工作的门槛和成本。

TBDS还提供提供多元化的集成方式,使其能够轻松地与各种生态系统实现无缝对接,来适应不断扩展的业务场景需求。此外,TBDS还全面支持国产化软硬件生态,涵盖主流芯片、操作系统、服务器、数据库、国密、IPv6等领域。
截止目前,腾讯云TBDS已持续为超1000家中大型客户构建国产化大数据方案,涵盖金融、能源、工业、零售、医疗等多个领域,如中国银行、中央广播电视总台、国家电网、中国商飞、三一重工、陕西建工等各行业头部客户,其中多项解决方案获得工信部、数博会等行业认可,数据量年增长速度超过90%。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。