但截至目前,将存储与计算相融合的技术尚未大范围流行。
NVM Express联盟日前更新规范,希望引入计算存储功能以建立新的标准化方式,在应用程序与包含特定处理功能的存储设备之间建立通信机制。
NVM Express(下文简称「该组织」)负责监督通过主机PCIe总线使用固态硬盘(SSD)的NVMe规范,而新加入的计算存储功能将进一步扩展规范以支持NVMe计算存储设备。
此番支持涵盖两套新的NVMe命令集:其一用于计算程序,其二用于子系统本地内存命令。两套命令集现在均可从NVM Express官方网站处下载。
其中计算程序命令集将使NVMe设备能够对NVM子系统中的数据执行操作,使用各项命令管理设备上的计算活动。
另一方面,子系统本地内存命令则允许通过NVMe I/O命令访问NVM子系统中的本地内存,可通过各项命令实现用户数据读取/写入以及将用户数据复制到设备本地内存等操作。
计算存储技术的核心,在于将计算与存储紧密耦合的新型架构。这种架构的优势,主要在于将处理能力嵌入至SSD等存储设备以减少数据移动需求。如此一来,数据库和AI处理等延迟关键型应用的响应速度将显著提升。
NVMe计算存储任务组联席主席Bill Martin在回应采访的声明中表示,“NVM Express计算存储是我们向企业和超大规模数据中心伸出援手,满足存储行业不断变化的现实需求的重要举措。”Martin本人还担任三星电子负责SSD IO标准的首席工程师。
“计算存储是一种标准化方法,将建立起开放且可互操作的生态系统。通过将计算任务移交至存储设备,我们预计相关行业的总体拥有成本将有所降低、整体性能也将随之提升。”
三星是目前制造计算存储驱动器(产品名称为SmartSSD)的参与厂商之一。
在与英特尔存储软件架构师Kim Malone共同撰写的博文中,Martin解释了数据集规模的增加如何在网络带宽用量、主机内存和CPU利用率等层面引发性能瓶颈。而计算存储技术又如何经由NVMe设备将部分数据处理任务从主机上转移出来,有效解决这个问题。
博文指出,“通过减少计算过程中所需的数据传输量,系统能够为关键数据应用提供更快的响应速度。”
“此外,通过将计算任务转移至NVMe设备,计算存储技术还有助于释放整个系统的架构利用率,降低数据中心环境的总体拥有成本。”
但根据技术媒体Blocks & Files最近的报道,计算存储技术截至目前并未得到市场的广泛接纳。而其中一大原因,就是与系统主机处理器(通常是FPGA或者少量Arm核心)相比,存储设备中嵌入的计算容量太过孱弱。
计算存储SSD的典型应用,往往侧重于承担压缩/解压缩、纠删码以及加速数据库等场景下的键值操作。
目前还不清楚新的NVM Express规范能否或者如何与存储网络行业协会(SNIA)定义的计算存储架构与编程模型相兼容。
不到一年之前,SNIA刚刚发布上述规范的1.0版本。文件定义了相关概念,旨在为应用程序提供通用编程模型,用以发现并使用附加至计算机系统的一切计算存储资源。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。