但截至目前,将存储与计算相融合的技术尚未大范围流行。
NVM Express联盟日前更新规范,希望引入计算存储功能以建立新的标准化方式,在应用程序与包含特定处理功能的存储设备之间建立通信机制。
NVM Express(下文简称「该组织」)负责监督通过主机PCIe总线使用固态硬盘(SSD)的NVMe规范,而新加入的计算存储功能将进一步扩展规范以支持NVMe计算存储设备。
此番支持涵盖两套新的NVMe命令集:其一用于计算程序,其二用于子系统本地内存命令。两套命令集现在均可从NVM Express官方网站处下载。
其中计算程序命令集将使NVMe设备能够对NVM子系统中的数据执行操作,使用各项命令管理设备上的计算活动。
另一方面,子系统本地内存命令则允许通过NVMe I/O命令访问NVM子系统中的本地内存,可通过各项命令实现用户数据读取/写入以及将用户数据复制到设备本地内存等操作。
计算存储技术的核心,在于将计算与存储紧密耦合的新型架构。这种架构的优势,主要在于将处理能力嵌入至SSD等存储设备以减少数据移动需求。如此一来,数据库和AI处理等延迟关键型应用的响应速度将显著提升。
NVMe计算存储任务组联席主席Bill Martin在回应采访的声明中表示,“NVM Express计算存储是我们向企业和超大规模数据中心伸出援手,满足存储行业不断变化的现实需求的重要举措。”Martin本人还担任三星电子负责SSD IO标准的首席工程师。
“计算存储是一种标准化方法,将建立起开放且可互操作的生态系统。通过将计算任务移交至存储设备,我们预计相关行业的总体拥有成本将有所降低、整体性能也将随之提升。”
三星是目前制造计算存储驱动器(产品名称为SmartSSD)的参与厂商之一。
在与英特尔存储软件架构师Kim Malone共同撰写的博文中,Martin解释了数据集规模的增加如何在网络带宽用量、主机内存和CPU利用率等层面引发性能瓶颈。而计算存储技术又如何经由NVMe设备将部分数据处理任务从主机上转移出来,有效解决这个问题。
博文指出,“通过减少计算过程中所需的数据传输量,系统能够为关键数据应用提供更快的响应速度。”
“此外,通过将计算任务转移至NVMe设备,计算存储技术还有助于释放整个系统的架构利用率,降低数据中心环境的总体拥有成本。”
但根据技术媒体Blocks & Files最近的报道,计算存储技术截至目前并未得到市场的广泛接纳。而其中一大原因,就是与系统主机处理器(通常是FPGA或者少量Arm核心)相比,存储设备中嵌入的计算容量太过孱弱。
计算存储SSD的典型应用,往往侧重于承担压缩/解压缩、纠删码以及加速数据库等场景下的键值操作。
目前还不清楚新的NVM Express规范能否或者如何与存储网络行业协会(SNIA)定义的计算存储架构与编程模型相兼容。
不到一年之前,SNIA刚刚发布上述规范的1.0版本。文件定义了相关概念,旨在为应用程序提供通用编程模型,用以发现并使用附加至计算机系统的一切计算存储资源。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。