韩国科技公司Panmnesia在2023年的Flash Memory Summit上展示了其集中式CXL内存系统。在一次现场演示中,该系统在运行Meta推荐应用程序时展示了比基于RDMA的系统快三倍以上的性能指标。
这项CXL技术是与位于大田的韩国科学技术研究院(KAIST)合作开发的。Panmnesia已经打造了一个包括CXL CPU、交换机和内存扩展器模块的全面CXL框架。该框架拥有基于DIMM的6TB容量的CXL内存。该公司的策略是将其CXL硬件和软件知识产权产品推向CXL系统开发商和制造商。
Panmnesia的首席执行官Myoungsoo Jung博士表示:“我们很高兴能在今年的Flash Memory Summit上介绍我们创新的多TB全系统CXL框架。通过我们的CXL IP,我们致力于开拓尖端解决方案,相信这将显著提升数据中心的内存和存储能力。”
这个演示系统的容量比同样在FMS 2023展示的基于2TB三星/MemVerge的池式内存系统大三倍。
Panmnesia硬件
Panmnesia框架系统机箱有两个CXL CPU模块(如上图所示)、三个颜色较浅的CXL交换机模块和六个1TB内存模块或CXL端点控制器,形成一个统一的DIMM池。
在软件方面,该系统运行在Linux上,由CXL硬件设备驱动程序、虚拟机子系统和CXL优化的用户应用程序组成。有趣的是,虚拟机软件组件在内存空间中创建了一个无CPU的NUMA节点。
Panmnesia软件
一个视频幻灯片展示了这个CXL框架系统在类似Meta推荐应用程序的电影推荐应用中的性能。 这再次与没有添加外部内存的服务器和基于RDMA的替代方案进行了比较。
Panmnesia 与RDMA的比较
视频从加载用户和项目数据(在张量初始化期间)开始,随后使用机器学习模型进行电影推荐。Panmnesia系统完成任务的速度 是RDMA系统的3.32倍。
Panmnesia系统的另一个好处是它的模块化;内存模块中的DIMM可以被替换,可以使用更大容量的DIMM来扩展内存容量,而不需要增加额外的内存模块。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。