Datadobi正在为其StorageMAP产品增加更多自动化功能,以帮助存储管理员更快速地完成更多工作。
该公司表示,面对日益复杂的数据环境,客户需要帮助来保持控制,同时避免承担更多的运营开销。StorageMAP 7.3减少了管理员在日常任务上花费的时间,帮助他们在不影响合规性或性能的情况下迁移关键数据。
Datadobi首席技术官Carl D'Halluin表示:"组织现在可以大规模定义和执行基于策略的操作,消除现有手动流程固有的瓶颈,使其文件和对象存储环境对运营需求的响应更加迅速。"
Datadobi的StorageMAP现在具备策略驱动工作流功能,作为其在文件和对象存储中编排和自动化数据管理任务能力的一部分。该公司表示,客户可以更精确地处理数据,并在S3兼容平台之间迁移的同时保持合规性。
潜在的使用场景包括定期自动化归档、创建数据管道为生成式AI应用提供数据、识别和重新定位非业务相关数据到隔离区域等。
其工作流引擎可以响应时间调度等触发器执行任务。一旦策略发布,StorageMAP就会按计划运行工作流,无需人工监督。"试运行"功能有助于在完整执行前检查策略的范围。
StorageMAP 7.3还增加了对以下功能的支持:
粒度文件级删除——这有助于从包含有效和无效文件混合的目录中删除文件。管理员可以识别符合特定条件的文件,并将其保存为定向删除作业的输入,StorageMAP将执行该作业。每个删除作业都会生成详细说明其参数和结果的报告。
S3兼容存储系统间的锁定对象迁移。这允许将WORM(一次写入多次读取)格式的数据在不同供应商平台间重新定位,同时保留其保留日期和法律保留。
对象迁移或复制过程中的S3存储类别选择,以支持成本和性能目标。
在中短期内,我们认为AI副驾驶型技术将被用于使非结构化数据资产几乎能够通过使用策略来优化成本、合规性、性能和弹性,从而实现自我管理。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
北卡罗来纳大学教堂山分校研究团队提出MEXA框架,通过动态选择和聚合多个专业AI模型来处理复杂的多模态推理任务。该方法无需额外训练,在视频理解、音频分析、3D场景理解和医学诊断等多个基准测试中显著超越现有模型,为AI系统设计提供了新思路。