一份 Seagate 的 Decarbonizing Data 报告指出,超过一半的企业领导者将能源使用视为主要关注点,而更高效地利用硬盘则是数据中心的明智选择。
报告引用了高盛的预测:到 2030 年,全球数据中心的电力需求相比 2023 年可能增长多达 165%。鉴于此,报告指出,数据量激增、能效提升速度放缓以及 AI 采用率上升正使各组织在同时管理碳排放、基础设施扩展和总体拥有成本(TCO)方面承受压力。
Seagate 云营销高级副总裁 Jason Feist 在报告中表示:“数据中心正受到严格审视——不仅因为它们支持现代 AI 工作负载,而且因为它们正成为数字经济中最耗能的行业之一。这要求我们对数据基础设施的认识进行根本性转变——不再将其视为成本与可持续性之间的权衡,而是看作在两者间实现优化的机会。”
那么,Seagate 认为这种根本性转变包含哪些内容呢?是要淘汰旋转硬盘吗?绝非如此。报告中包含了一张展示三种主要存储介质(硬盘、 SSD 和磁带)体内碳排放情况的表格:
结论如下: o SSD 的整体及每 TB 的体内碳排放均最高,是三种存储介质中碳密集度最高的选择。 o 硬盘无论在总体还是每 TB 计算上呈现最低碳足迹,提供了最碳效率高的可持续存储解决方案。 o LTO 磁带的体内碳排放适中,但其年度影响超过硬盘。
报告提出构建更可持续数据未来的三大策略支柱: 1. 技术创新:借助计算能力、存储面积密度的提升以及液体/浸没式冷却和 HVAC 系统等节能技术的进步,可大幅降低能耗和碳排放,有效应对不断增长的需求。 2. 生命周期延长与循环利用承诺:通过翻新、重复使用和维护存储设备,能够延长设备使用寿命,减少废弃物。实时环境监测和透明的报告机制也有助于在数据中心内落实责任。 3. 全生态系统的共同责任:如报告中所述,要实现涵盖范畴 1、2 及 3 的显著减排,需要供应商、合作伙伴以及云服务提供商在整个价值链上的协同合作。
Seagate 举例提到其基于 HAMR 技术的 Mozaic 3+ 硬盘技术已进入量产阶段。该技术在相同体积下的容量最高可达 10 TB 硬盘的三倍以上,同时每 TB 的体内碳排放降低超过 70%,并且根据 IDC 的数据,每 TB 成本降低了 25%。
Feist 表示:“可持续性问题绝非孤立可以解决。只有在基础设施建设、生命周期管理和全行业责任落实等方面采取整体性策略,才能确保 AI 和数据中心运作的增长不会以牺牲环境为代价。”
Seagate 自行生产并销售面向数据中心的 Nytro SSD 产品。而基于闪存驱动器的厂商 Pure Storage 则持不同观点。正如预期,其采用的是系统级视角,而不是单个硬盘的计算方法。Pure 指出,就一个拥有 1 exabyte 存储部署、硬盘生命周期为五年及 DirectFlash 模块生命周期为十年的十年周期内,其分析显示硬盘系统排放碳达 107,984 公吨,而基于 Pure 系统的排放仅为 14,779 公吨。
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。