近日,2024年度开发者大会暨光合基金三期结项评审会在美丽的海滨城市天津全满结束。本次结项评审共有100多个课题同时进行答辩,Ai方向经过权威专家组的慎重讨论,《训练一体化平台移植国产加速卡》《基于国产加速卡的文生图并行训练方法研究》《面向流场预测的长序列模型研究与移植》三项荣获光和基金3期优秀课题,助推行业智能化发展。
其中,《训练一体化平台移植国产加速卡》由光合组织与思必驰共同研究推出,以破解私域知识不准确,判别式任务精度及时效性不足,数据安全和计算可信问题,以及工程化成本高等问题。移植完成后,200片国产加速卡卡,每天可完成30+模型任务的训练;针对500万数据的解码,速度明显快了70%,500万数据量的解码平均时长更是缩短了近一半。课题的完成,将支撑语音识别、自然语言处理、语音全成等场景下的训练任务稳定性、可靠性性和可扩展性,不仅提升了模型训练的效率,减少了训练排队等待的时延,还缩短了整体的研发和落地周期。
《基于国产加速卡的文生图并行训练方法研究》是光合组织与西安电子科技大学共同研究的课题,以期实现在Stable Diffusion算法复杂度高的情况下,解决应用中面临的关键技术难题。移植完成后,使用1024片国产加速卡,加速比可以达到56倍,性能提升显著。测试结果超出预期,用户非常满意,给予高度评价,充分肯定国产化的优势。
《面向流场预测的长序列模型研究与移植》作为光合组织与北京航空航天大学共同研究的课题,瞄准流体力学领域的Navier-Stokes方程求解问题,以流场预测任务为牵引,基于成熟的CAE-LSTM基础模型,移植新一代长序列建模的Informer神经网络模型,实现高性能流场预测模型CAE-Informer。课题完成后,使用基于Informer的序列模型进行预训练,替代传统LSTM等模型,预期比现有模型提升20%以上性能,并在同等算力下提高1倍以上计算效率。同时,在batch-size为1的情况下,并行效率93.1%。
课题的不断推新,不仅展示了中国在AI领域的强大实力和无限潜力,也为全球AI市场的格局带来了新的变化。接下来,光合组织将不断继续创新、不断进步,为全球AI技术的发展贡献更多的力量。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。