6月18日,在腾讯云融合创新大会上,腾讯云宣布大数据TBDS平台全新升级,通过深度融合多架构技术,实现了在单一平台上的湖仓统一,能提供数据入湖、存储、分析、应用等全场景的数据服务能力。升级后的TBDS综合性能提升20%,存算可按需伸缩和智能调优,让大数据处理进一步降本增效。
腾讯云大数据总经理徐晓敏表示,腾讯积累了非常丰富的大数据实践,持续为客户打造更轻、更快、更易用、更安全的大数据产品,致力于让企业实现数据的存储、分析和应用的自由,让大数据的价值快速兑现。
全新升级的TBDS融合了两种产品形态。一方面兼容社区生态,针对存储、计算、调度、分析等环节提供“开箱即用”的组件和引擎,帮助用户轻松应对实时分析、交互分析、数仓构建以及海量点查等多种需求场景。
另一方面,TBDS基于Lakehouse架构打造了云原生数据湖仓。借助统一元数据服务能力,异构存储集群间的数据可以互访,实现“一份数据、多种计算”,省去了传统大数据平台因为计算场景不一带来的数据来回搬迁。
得益于无服务的产品形态,TBDS数据湖仓变得“更轻”,用户可以一次部署、随开随用。过去需要多名专业人员协同完成的大数据任务,在TDBS上仅需少量人力即可独立操作。同时,极简化的操作体验也使得数据分析人员不再需要繁琐的配置工作,可以聚焦业务场景和目标实现,显著降低企业内部开展大数据工作的门槛和成本。
TBDS还提供提供多元化的集成方式,使其能够轻松地与各种生态系统实现无缝对接,来适应不断扩展的业务场景需求。此外,TBDS还全面支持国产化软硬件生态,涵盖主流芯片、操作系统、服务器、数据库、国密、IPv6等领域。
截止目前,腾讯云TBDS已持续为超1000家中大型客户构建国产化大数据方案,涵盖金融、能源、工业、零售、医疗等多个领域,如中国银行、中央广播电视总台、国家电网、中国商飞、三一重工、陕西建工等各行业头部客户,其中多项解决方案获得工信部、数博会等行业认可,数据量年增长速度超过90%。
好文章,需要你的鼓励
在他看来,企业对AI的恐惧源自未知,而破解未知的钥匙,就藏在“AI平台+开源”这个看似简单的公式里。
斯坦福和魁北克研究团队首创"超新星事件数据集",通过让AI分析历史事件和科学发现来测试其"性格"。研究发现不同AI模型确实表现出独特而稳定的思维偏好:有些注重成就结果,有些关注情感关系,有些偏向综合分析。这项突破性研究为AI评估开辟了新方向,对改善人机协作和AI工具选择具有重要意义。
Pure Storage发布企业数据云(EDC),整合其现有产品组合,提供增强的数据存储可见性和基于策略的简化管理。EDC集成了Purity存储操作系统、Fusion资源管理、Pure1舰队管理和Evergreen消费模式等架构元素,提供类云存储管理环境。该方案支持声明式策略驱动管理,让客户专注业务成果而非基础设施管理。同时发布高性能闪存阵列和300TB直接闪存模块,并与Rubrik合作提供网络安全防护能力。
威斯康星大学研究团队提出"生成-筛选-排序"策略,通过结合快速筛选器和智能奖励模型,在AI代码验证中实现了11.65倍速度提升,准确率仅下降8.33%。该方法先用弱验证器移除明显错误代码,再用神经网络模型精确排序,有效解决了传统方法在速度与准确性之间的两难选择,为实用化AI编程助手铺平了道路。