今天,全球领先的海量数据存储基础设施解决方案提供商希捷科技(NASDAQ:STX)发布了Mozaic 3+(魔彩盒3+)里程碑式平台,标志着存储行业进入全新时代。
Mozaic 3+™(魔彩盒3+)平台,搭载领先的热辅助磁记录(HAMR)技术。该平台标志着单碟片面密度达到了前所未有的3TB+,并在未来几年内将实现单碟4TB+和5TB+的发展路线图。
Mozaic 3+(魔彩盒3+)加持了希捷的旗舰企业级希捷银河Exos产品系列,其中包括最新发布的30TB及以上容量的硬盘。希捷银河Exos 30TB+硬盘将于本季度向超大规模云客户批量供货。
希捷在硬盘面密度(每碟片上可存储的数据)方面的创新解决了行业共同面临的痛点。Mozaic 3+(魔彩盒3+)使用户能够在相同空间内存储更多的数据。目前,大规模数据中心采用的硬盘单盘平均容量为16TB。从16TB的垂直磁记录(PMR)硬盘升级到希捷银河Exos 30TB Mozaic 3+(魔彩盒3+)技术硬盘,容量在相同的空间内实现了翻倍。
该平台使用与PMR硬盘基本相同的材料组件,同时大幅增加容量,使数据中心能够显著降低存储采购和运营成本,每TB功耗降低40%。Mozaic 3+(魔彩盒3+)还可以帮助客户实现可持续发展目标,这是大规模数据中心的首要任务。相较于传统的16TB PMR的硬盘,新一代产品每TB减少了55%的碳排放。
希捷面临着来自数据中心客户的强劲需求,预计将于本季度末完成Mozaic 3+(魔彩盒3+)的验证测试,并开始批量出货。全球领先的一家云服务提供商用户正计划将数据中心的希捷硬盘产品升级至Mozaic 3+(魔彩盒3+),这也表明了用户对该技术的信心。
希捷科技首席执行官Dave Mosley博士表示:“希捷是全球唯一一家能够实现单碟3TB存储面密度的硬盘制造商,将来会实现单碟5TB的面密度。随着人工智能应用场景对原始数据集的重视,越来越多的企业需要尽可能地存储所有数据。为了应对由此产生的海量数据,面密度创新举足轻重。”
Dave Mosley博士还指出:“Mozaic 3+(魔彩盒3+)平台不仅仅代表HAMR技术,它还整合了多种行业领先的创新技术,从而有效提升面密度。”
以下是Mozaic 3+(魔彩盒3+)平台的亮点:
1. 超晶格铂合金介质。高密度记录的物理学原理要求在纳米级基础上实现更小介质的颗粒尺寸,但颗粒越小,稳定性越差,这是挑战所在。传统合金无法提供足够的磁性稳定性以实现有效可靠的存储。在Mozaic 3+(魔彩盒3+)平台中,开创性地使用了铁-铂超晶格结构作为介质合金,显著提高了磁盘介质的磁矫顽力,数据写入更加精确,并实现了前所未有的位稳定性。
2. 等离子写入器。为了配合更加稳定和牢固的超晶格铂合金介质,产品设计了一个革命性的写入器,这是一个微型化和精密工程的奇迹,也是希捷独有的HAMR技术的呈现。这项技术的背后是纳米光子激光器,它在介质表面产生一个微小的热点,以便可靠地写入数据。
希捷计划将纳米光子激光器垂直集成到等离子体写入器子系统中。Dave Mosley博士表示:“我们为Mozaic 3+(魔彩盒3+)自主开发了独特的激光技术,将确保更高的效率和产量,以支持快速规模化的批量生产。”
3. 第7代自旋电子读取器。更小的写入数据颗粒只有在能够被读取时才能发挥作用。该读取器与等离子写入器的子组件一起集成,也需要不断进化。Mozaic 3+(魔彩盒3+)采用了量子技术,该读取器是世界上最小、最灵敏的磁场读取传感器之一。
4. 12nm集成控制器。为了高效地协调所有这些技术,希捷使用的集成控制器是一款完全由公司内部开发的片上系统。相较于之前的解决方案,这种专用集成电路实现了高达3倍的性能提升。
IDC全球数据研究中心研究副总裁John Rydning表示:“硬盘面密度的提升对于经济高效地扩展海量存储容量,尤其是数据中心的部署至关重要。希捷创新性的面密度突破恰逢其时,也使希捷能够在未来几年内提供容量越来越大的硬盘产品。”
除了数据中心,Mozaic 3+(魔彩盒3+)存储技术还将支持更加广泛的应用,包括企业级、边缘、NAS以及视频和图像应用(VIA)市场。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。