为了解决定位问题难、发现瓶颈难、决策支持难、架构梳理难,紫光云提供云上业务运维新姿势——AI全链路观测。
作为更适应云原生时代云上运维整体解决方案,AI全链路观测“快”速发现故障,精“准”定位问题,“智”能巡检,保障业务持久稳定运行!
紫光云AI全链路观测服务平台,通过无侵入式数据采集探针,全方位捕获并智能分析异常指标、日志和链路数据,以可视化的方式呈现结果,为运维、开发和管理人员提供决策支持和服务。同时,为不同行业的业务人员提供数字化、智能化和可视化的数据应用服务。

从此,可以告别,云上业务运维的重重困难和挑战。
全链路拓扑,“快”速发现故障

AI全链路观测链路分层
AI全链路观测通过多级链路分层拓扑自动发现,实现了多级拓扑、全景链路实时动态展示和指标可视等功能。这种创新的运维方式使得运维人员能够迅速定位故障层级和具体模块,真正实现所见即所得的业务可视化运维。
这不仅大大提高了运维效率,也为企业节省了大量的人力成本和时间成本。同时,这种全链路观测方式还能帮助企业及时发现潜在的系统瓶颈和问题,从而提前预防和解决潜在的风险,保障业务的持久稳定运行。
时空回溯,精“准”定位问题

AI全链路观测时空回溯
AI全链路观测的时空回溯功能,打造独有的“时光机”能力,可以让运维人员一键定位故障现场,快速还原故障状态,进而精确定位问题的根本原因。这种创新的运维方式,让运维人员从繁琐的工作中解放出来,有更多的时间和精力去关注更重要的业务发展。相较于传统的运维方式,AI全链路观测是一次全方位的能力升级,将云原生运维带入了全新的时代。
一键健康体检,AI“智”能巡检综合管理

AI全链路观测一键体检
AI全链路观测的一键健康体检功能,可以主动扫描探测潜在问题,先于故障发生前识别风险,从而避免问题扩大导致严重事故。这种“先知预警”的创新运维方式,不仅可以提前发现问题,还可以在问题发生时,快速进行应急恢复,大大降低业务中断的时长。紫光云自研异常检测、告警收敛、故障预测等智能算法模型,有助于优化业务和资源瓶颈,保障核心服务的正常运行。此外,紫光云AI全链路观测通过大模型对日志性能、调用链、告警等信息进行关联分析,并分别给出详细的分析诊断报告。然后,将这些已知的情况以及各个检查项的分析结果进行汇总,从而推断出可能的根本原因。

紫光云依托“上云、用数、赋智”三维能力,全面满足了云原生时代应用上云的需求。通过对数据的深度挖掘和分析,紫光云AI全链路观测可以为企业提供精准的决策支持,帮助他们更好地理解业务需求,优化资源配置,提高工作效率。同时,AI全链路观测还可以通过智能化的技术手段,实现对业务的实时监控和预警,有效防止潜在的风险,保障业务的持久稳定运行。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。