备份专家Veeam日前推出一体化的Veeam数据平台,包括Veeam 备份与复制、监控工具VeeamONE、Veeam 业务恢复编排器自动化功能以及Salesforce和Office365的SaaS备份模块。Veeam数据平台取代了Veeam 可用性套件。Veeam 可用性套件之前曾将Veeam的所有数据保护产品捆绑在一起。
Kubernetes容器备份产品Kasten可以与Veeam数据平台一起销售,但尚未整合到VeeamOne控制台。
Veeam区域副总裁Patrick Rohrbasser表示,“我们把自己的解决方案放在一个新的平台上,以应对勒索软件、混合云和容器化的新数据安全挑战。”
Rohrbasser表示,“说起新挑战这事,现在更强调在事件发生后快速恢复的能力。”
他称,“企业不只是想要一个备份副本。他们希望更好地协调恢复正常的能力,因此就需要复杂的规划并坚持遵守监管要求。Veeam数据平台提供了自动化和监控方面的工具以及主动决策支持,可以实现这些目标。”
Veeam备份和复制层提供实时备份功能、异步复制到二级灾难恢复(DR)站点以及无延迟恢复。这些几乎涵括了所有可能的情况,例如虚拟机或物理机、本地或云、Windows、Linux或Mac,文件或数据库等等。
Veeam Veeam 备份与复制第12版与第11版相比据称多了500种新功能。这些功能包括不可改变的副本,现在扩展到所有备份的托管副本,即是说包括块、文件和对象模式的卷以及AWS和Azure的云存储数据。另一个突出的新增功能是可以无需转换直接将备份保存到对象存储。
VeeamOne层引入了自动备份测试,以确保备份是健康的和可恢复的。VeeamOne还可以检测隐藏在备份中的勒索软件,除了检测写入错误,特别是那些可能在数据库保存期间被破坏数据的错误。该软件提供快速解决这类问题的方法。最后,VeeamOne为备份引入了分析功能。客户可以定义符合自己要求所必须满足的条件的备份,并对其进行审计。
Veeam Veeam 业务恢复编排器是最后一层,允许预定义恢复场景,只需点击一下就可以启动恢复场景。该软件不只是恢复到客户想要恢复的地方,还可以测试数据,必要时清除任何感染,然后将运行数据所需的服务器重新上线。Veeam Veeam 业务恢复编排器甚至可以在事件发生前模拟各种场景。
Rohrbasser表示,“简而言之,Veeam数据平台令企业在面临新的挑战和技能短缺的情况下节省时间。”
Veeam数据平台提供三种功能级别的销售选择。最昂贵的版本(高级版)包括所有的功能,并由Veeam勒索软件保证(Veeam Ransomware Warranty)支持,Veeam勒索软件保证指在发生网络攻击时Veeam数据平台没有解决的情况下对客户进行赔偿。
高级版缺少Veeam 业务恢复编排器层,而Foundation版或多或少是Veeam 备份与复制的一个新产品。需要注意的是,现在已经不可能单独购买VeeamOne了。
Office365和Salesforce模块以及Kasten可以单独购买,或者作为Veeam数据平台的一部分购买。
Rohrbasser表示,“我们可以把这些产品作为Veeam数据平台的一部分出售。但这些都是非常理想的功能,我们可以瞄准那些还不是我们客户的企业。”
他表示,“在我们的竞争对手客户群中,Kasten特别成功。其中一个原因是,Kasten除了备份还是一个在不同Kubernetes集群之间迁移容器的好工具。”
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。