Gartner最新发布的这份存储与数据保护炒作周期报告(https://www.gartner.com/doc/reprints?id=1-2AKYQ03B&ct=220714&st=sb)可谓体量惊人,其中凝结着Gartner咨询团队对行业及市场趋势做出的分析判断。
所谓炒作周期的概念,就是在沿时间横轴与预期竖轴的两轴空间内,各项技术呈现出的曲线轮廓。技术沿线条游走,初期呈现为上升线,即所谓创新触发期。推进至最高点时,即达到膨胀预期的顶峰,之后开始迅速下落至炒作破灭的低谷。但这并非结束,接下来可以看到创新技术会回归真正的启蒙阶段,再次回到人们的讨论与应用视野,最终进入切实服务生产力的实践平台期。

从期望膨胀的顶峰到泡沫破灭的低谷,整个炒作周期的概念不禁让人想到John Bunyan的神学寓言书《天路历程》。
Gartner的专家们将各项技术分别置于曲线上的各个点,再通过固定的文本格式陈述这种点位选取的合理性——包括定义、重要意义、业务影响、驱动因素、障碍、用户建议等,之后还提供一组供应商技术示例:

而一旦进入最终生产力阶段,相关技术则被视为已经发展成熟,不再计入炒作周期讨论。
以下是优先级矩阵表,展示各项技术获得主流采用的预期年数:

这无疑是一份启发性极强,值得认真阅读的宝贵资料。
但这也给我们留下了新的疑问:Gartner的存储炒作周期报告本身,位于炒作周期中的哪个位置?到底是泡沫破灭的低谷,还是启蒙的二次上升期?
好文章,需要你的鼓励
这项由索非亚大学INSAIT和苏黎世联邦理工学院共同完成的研究,揭示了大语言模型在数学定理证明中普遍存在的"迎合性"问题。研究团队构建了BrokenMath基准测试集,包含504道精心设计的错误数学命题,用于评估主流AI模型能否识别并纠正错误陈述。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
实验室和真实使用测试显示,iPhone Air电池续航能够满足一整天的典型使用需求。在CNET进行的三小时视频流媒体压力测试中,iPhone Air仅消耗15%电量,表现与iPhone 15相当。在45分钟高强度使用测试中表现稍逊,但在实际日常使用场景下,用户反馈iPhone Air能够稳定支撑全天使用,有线充电速度也比较理想。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。