Gartner最新发布的这份存储与数据保护炒作周期报告(https://www.gartner.com/doc/reprints?id=1-2AKYQ03B&ct=220714&st=sb)可谓体量惊人,其中凝结着Gartner咨询团队对行业及市场趋势做出的分析判断。
所谓炒作周期的概念,就是在沿时间横轴与预期竖轴的两轴空间内,各项技术呈现出的曲线轮廓。技术沿线条游走,初期呈现为上升线,即所谓创新触发期。推进至最高点时,即达到膨胀预期的顶峰,之后开始迅速下落至炒作破灭的低谷。但这并非结束,接下来可以看到创新技术会回归真正的启蒙阶段,再次回到人们的讨论与应用视野,最终进入切实服务生产力的实践平台期。
从期望膨胀的顶峰到泡沫破灭的低谷,整个炒作周期的概念不禁让人想到John Bunyan的神学寓言书《天路历程》。
Gartner的专家们将各项技术分别置于曲线上的各个点,再通过固定的文本格式陈述这种点位选取的合理性——包括定义、重要意义、业务影响、驱动因素、障碍、用户建议等,之后还提供一组供应商技术示例:
而一旦进入最终生产力阶段,相关技术则被视为已经发展成熟,不再计入炒作周期讨论。
以下是优先级矩阵表,展示各项技术获得主流采用的预期年数:
这无疑是一份启发性极强,值得认真阅读的宝贵资料。
但这也给我们留下了新的疑问:Gartner的存储炒作周期报告本身,位于炒作周期中的哪个位置?到底是泡沫破灭的低谷,还是启蒙的二次上升期?
好文章,需要你的鼓励
随着数字化时代的到来,网络安全威胁呈指数级增长。勒索软件、AI驱动的网络攻击和物联网设备漏洞成为主要威胁。企业需要建立全面的风险管理策略,包括风险评估、安全措施实施和持续监控。新兴技术如人工智能、区块链和量子计算为网络安全带来新机遇。组织应重视员工培训、供应链安全、数据治理和事件响应能力建设。
滑铁卢大学研究团队开发出ScholarCopilot,一个革命性的AI学术写作助手。该系统突破传统"先检索后生成"模式,实现写作过程中的动态文献检索和精确引用。基于50万篇arXiv论文训练,引用准确率达40.1%,大幅超越现有方法。在人类专家评估中,引用质量获100%好评,整体表现优于ChatGPT。这项创新为AI辅助学术写作开辟新道路。
AWS Amazon Bedrock负责人Atul Deo正致力于让人工智能软件变得更便宜和更智能。他在12月re:Invent大会前只有六个月时间来证明这一目标的可行性。Deo表示AI领域发展速度前所未有,模型每几周就会改进,但客户只有在经济效益合理时才会部署。为此,AWS推出了提示缓存、智能路由、批处理模式等功能来降低推理成本,同时开发能执行多步骤任务的自主代理软件,将AI应用从聊天机器人转向实际业务流程自动化。
哥伦比亚大学研究团队发布NodeRAG技术,通过异构图结构革新智能问答系统。该方法将文档信息分解为7种节点类型,采用双重搜索机制,在多个权威测试中准确率达89.5%,检索效率提升50%以上,为智能信息检索技术带来重大突破。