戴尔使用第三方合作伙伴的软件,配合自家服务器、存储和网络硬件/软件,共同构建起一套数据湖/智能湖仓参考架构设计方案。
与Databricks、Dremio、SingleStore和Snowflake等同类厂商一样,戴尔建立的也是统一的智能湖仓架构。其中的基本思路,就是提供一套统一的通用存储,无需运行提取、转换和加载(ETL)流程就能选择原始数据,再以合适的形式存储在数据仓库内以方便使用。总体来看,这就像是在数据湖内又建立了一个虚拟数据仓库。
戴尔ISG解决方案营销总监Chhandomay Mandal还专门为此撰写博文,表示“传统数据管理系统,例如数据仓库,几十年来一直负责存储结构化数据以供分析使用。但数据仓库在设计上无法承载体量愈发庞大的数据集合。戴尔此次设计的参考架构使用第三方合作伙伴的软件,配合自家服务器、存储和网络硬件/软件,共同建立起数据湖/智能湖仓。这套方案能够直接支持文本、图像、视频、物联网等多种数据,还支持需要直接访问数据的人工智能与机器学习算法。”
他提到,“如今,很多组织已经将数据湖与数据仓库结合使用——将数据存储在湖内,之后再复制到仓库里以降低访问难度。但这无疑增加了分析环境的复杂性和使用成本。”
最好能在单一平台上解决所有需求。而戴尔Data Lakehouse提供的分析验证设计能够直接支持商务智能(BI)、分析、实时数据应用、数据科学及机器学习。这套方案基于PowerEdge服务器、PowerScale块/文件统一存储阵列、ECS对象存储及PowerSwitch网络。该系统可以安装在本地或托管设施当中。
块/文件存储示意图
其中采用的软件技术包括Robin Cloud Native Platform、Apache Spark(开源分析引擎)、Kafka(开源分布式事件流平台)以及Delta Lake技术。Databricks的开源Delta Lake软件以Apache Spark为基础,戴尔之前就一直在内部智能湖仓中使用。
戴尔最近还与乐天集团收购的Roin.IO及其开源Kubernetes平台开展合作。
戴尔最近宣布与Snowflake达成外部表访问协议,并表示此次Data Lakehouse智能湖仓的设计概念也用到了这一协议。据推测,未来Snowflake外部表将可以直接引用戴尔智能湖仓中的数据。
戴尔还发布了上面这张演示文稿,看起来是相当复杂。该解决方案的具体信息参见下表:
很明显,这不是那种能拿来即用的系统。在跟戴尔签订协议之前,客户还认真研究自己到底要使用哪些组件和选型。
有趣的是,HPE也推出了颇为相似的产品Ezmeral Unified Analytics,其中同样使用到Databrick的Delta Lake技术、Apache Spark和Kubernetes。HPE本周将举办Discover活动,预计届时将发布更多消息。从这个角度看,戴尔好像是故意要抢先一步。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。