戴尔使用第三方合作伙伴的软件,配合自家服务器、存储和网络硬件/软件,共同构建起一套数据湖/智能湖仓参考架构设计方案。
与Databricks、Dremio、SingleStore和Snowflake等同类厂商一样,戴尔建立的也是统一的智能湖仓架构。其中的基本思路,就是提供一套统一的通用存储,无需运行提取、转换和加载(ETL)流程就能选择原始数据,再以合适的形式存储在数据仓库内以方便使用。总体来看,这就像是在数据湖内又建立了一个虚拟数据仓库。
戴尔ISG解决方案营销总监Chhandomay Mandal还专门为此撰写博文,表示“传统数据管理系统,例如数据仓库,几十年来一直负责存储结构化数据以供分析使用。但数据仓库在设计上无法承载体量愈发庞大的数据集合。戴尔此次设计的参考架构使用第三方合作伙伴的软件,配合自家服务器、存储和网络硬件/软件,共同建立起数据湖/智能湖仓。这套方案能够直接支持文本、图像、视频、物联网等多种数据,还支持需要直接访问数据的人工智能与机器学习算法。”
他提到,“如今,很多组织已经将数据湖与数据仓库结合使用——将数据存储在湖内,之后再复制到仓库里以降低访问难度。但这无疑增加了分析环境的复杂性和使用成本。”
最好能在单一平台上解决所有需求。而戴尔Data Lakehouse提供的分析验证设计能够直接支持商务智能(BI)、分析、实时数据应用、数据科学及机器学习。这套方案基于PowerEdge服务器、PowerScale块/文件统一存储阵列、ECS对象存储及PowerSwitch网络。该系统可以安装在本地或托管设施当中。
块/文件存储示意图
其中采用的软件技术包括Robin Cloud Native Platform、Apache Spark(开源分析引擎)、Kafka(开源分布式事件流平台)以及Delta Lake技术。Databricks的开源Delta Lake软件以Apache Spark为基础,戴尔之前就一直在内部智能湖仓中使用。
戴尔最近还与乐天集团收购的Roin.IO及其开源Kubernetes平台开展合作。
戴尔最近宣布与Snowflake达成外部表访问协议,并表示此次Data Lakehouse智能湖仓的设计概念也用到了这一协议。据推测,未来Snowflake外部表将可以直接引用戴尔智能湖仓中的数据。
戴尔还发布了上面这张演示文稿,看起来是相当复杂。该解决方案的具体信息参见下表:
很明显,这不是那种能拿来即用的系统。在跟戴尔签订协议之前,客户还认真研究自己到底要使用哪些组件和选型。
有趣的是,HPE也推出了颇为相似的产品Ezmeral Unified Analytics,其中同样使用到Databrick的Delta Lake技术、Apache Spark和Kubernetes。HPE本周将举办Discover活动,预计届时将发布更多消息。从这个角度看,戴尔好像是故意要抢先一步。
好文章,需要你的鼓励
软件开发瓶颈是现代企业面临的关键挑战。本文探讨了消除瓶颈的有效策略,包括优化沟通、提高可视化、自动化流程和培养共同责任文化。专家建议通过异步更新、看板管理和自动化工具来提高效率。同时强调了数据质量、跨团队协作和持续改进的重要性。文章还提到了新兴技术如AI在解决瓶颈问题中的潜在应用。
随着人工智能技术的发展,深度伪造内容在网络上大量涌现,可能对我们的健康造成潜在威胁。从虚假名人代言到有害的AI生成医疗建议,深度伪造正在助长一波危险的虚假信息浪潮。本文探讨了深度伪造在医疗保健领域的负面影响,以及如何在这个充满虚假信息的时代保护自己的健康。
INCYMO.AI 推出了一个革新性的 AI 驱动创意平台,专注于移动游戏广告制作。该平台基于 10 万多个市场验证广告的数据分析,通过 AI 技术为游戏营销人员提供创意构思和广告生成服务。在创意疲劳、用户获取成本上升和隐私限制的当前环境下,该平台为游戏营销开辟了一条数据驱动的全新道路。
Databricks 与 Palantir 签署合作协议,开发出更优的大语言模型微调方法,并与 Anthropic 达成为期五年的战略联盟,将 Claude 大语言模型整合到其数据湖平台中。此次合作将为企业客户提供更强大的 AI 能力,包括军工级安全性、高效的模型训练以及全面的数据治理,助力企业打造专属 AI 应用。